

 Meilhaus Electronic Manual

Intelligent Driver System ME-

iDS 3.0E

Intelligent Driver System for

Windows 2000/XP/Vista, Windows 7

Imprint

Manual Meilhaus Intelligent Driver System (ME-iDS)

Revision 3.0

Revised: 2021-09-06

Meilhaus Electronic GmbH
Am Sonnenlicht 2
D-82239 Alling bei München
Germany
www.meilhaus.de

© Copyright 2021 Meilhaus Electronic GmbH

All rights reserved. No part of this publication may be reproduced or dis-

tributed in any form whether photocopied, printed, put on microfilm or be

stored in any electronic media without the expressed written consent of

Meilhaus Electronic GmbH.

Important note:

The information contained in this manual has been reviewed with great

care and is believed to be complete and accurate. Meilhaus Electronic as-

sumes no responsibility for its use, any infringements of patents or other

rights of third parties which may result from use of this manual or the prod-

uct. Meilhaus Electronic assumes no responsibility for any problems or

damage which may result from errors or omissions. Specifications and in-

structions are subject to change without notice.

Note the Meilhaus Electronic general terms of business:

www.meilhaus.de/en/infos/my-shop/tob/

All trademarks acknowledged. All trademarks are property of their respec-

tive owners.

http://www.meilhaus.de/en/
http://www.meilhaus.de/en/infos/my-shop/tob/

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

Content page 3 Meilhaus Electronic

Content

1 Introduction ..7

1.1 Supported Devices .. 8

1.1.1 Use in Accordance with the Requirements 9

1.1.2 Improper Application ... 9

1.1.3 Unforeseeable Misapplications ... 10

1.2 System Requirements ... 10

1.3 Naming Conventions ... 10

1.4 Documentation .. 10

2 Installation ..12

2.1 Installation under Windows ... 12

2.2 Configuration Utility (ME-iDC) ... 12

2.2.1 Subdevice Configuration ... 13

2.2.2 Firmware Configuration .. 14

2.2.3 Registering a Remote Device ... 14

2.3 Setting the IP Address ... 15

3 Programming ..17

3.1 Architecture of the Driver System .. 17

3.1.1 Library Files .. 18

3.2 Language Support ... 18

3.2.1 High-Level Language Support .. 19

3.2.2 Graphical Programming Tools .. 19

3.3 Concept of the Library ... 20

3.3.1 Hierarchy Levels ... 20

3.3.2 Properties ... 21

3.3.2.1 Property Pathes .. 22

3.3.2.2 Abbreviations for Property Pathes 23

3.3.2.3 Property Functions .. 23

3.3.2.3.1 Reading Property Values .. 23

3.3.2.4 Attribute .. 24

3.3.2.5 Property Types ... 26

3.3.2.6 Access Type of Properties .. 27

3.3.2.7 System Attributes .. 28

3.3.2.8 General Device Properties .. 28

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

Content page 4 Meilhaus Electronic

3.3.2.9 Subdevice Properties .. 29

3.3.2.10 Properties of Configuration Containers 29

3.3.3 Subdevices ... 30

3.3.3.1 Analog Input/Output .. 30

3.3.3.2 Digital Input/Output ... 31

3.3.3.3 Frequency Input/Output .. 31

3.3.3.4 Counter ... 31

3.3.3.5 Interrupt .. 31

3.3.3.6 “FPGA” (planned) ... 32

3.3.4 Structure of the API .. 32

3.3.4.1 Query Functions ... 32

3.3.4.2 Property Functions .. 32

3.3.4.3 Input/Output Functions ... 33

3.3.4.4 Auxiliary Functions .. 33

3.3.5 Basic Procedure ... 33

3.3.5.1 Initialization ... 33

3.3.5.2 Protection.. 34

3.3.5.3 Error handling ... 35

3.4 Operation Modes ... 37

3.4.1 Single Operation ... 37

3.4.1.1 Start Operation/Trigger Options 38

3.4.1.2 Analog Input/Output .. 39

3.4.1.3 Digital Input/Output ... 40

3.4.1.4 Frequency Input/Output .. 41

3.4.1.4.1 Frequency Measurement .. 42

3.4.1.4.2 Pulse Generator .. 43

3.4.1.5 Counter Operation .. 46

3.4.1.5.1 Mode 0: Change State at Zero 47

3.4.1.5.2 Mode 1: Retriggerable „One-Shot“ 47

3.4.1.5.3 Mode 2: Asymmetric Divider 48

3.4.1.5.4 Mode 3: Symmetric Divider ... 48

3.4.1.5.5 Mode 4: Counter Start by Software Trigger 48

3.4.1.5.6 Mode 5: Counter Start by Hardware Trigger 49

3.4.1.5.7 Mode „Pulse Width Modulation“ 49

3.4.2 Streaming Operation ... 51

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

Content page 5 Meilhaus Electronic

3.4.2.1 Querying Hardware Properties 51

3.4.2.2 Configuring Hardware ... 51

3.4.2.3 Channel List .. 52

3.4.2.4 Trigger Structure ... 52

3.4.2.4.1 Timing Stream-Timer .. 56

3.4.2.4.2 Timing Stream-Trigger-Sample 59

3.4.2.4.3 Timing Stream-Trigger-List.. 60

3.4.2.5 Reading Data .. 62

3.4.2.5.1 Procedure Reading Data ... 63

3.4.2.5.2 Reading without Callback Function 65

3.4.2.5.3 Reading with Callback Function 65

3.4.2.6 Writing Data .. 67

3.4.2.6.1 Procedure Writing Data ... 68

3.4.2.6.2 Writing without Callback Function 70

3.4.2.6.3 Writing with Callback Function 71

3.4.2.6.4 Wraparound Option ... 72

3.4.2.7 Stop Streaming Operation .. 72

3.4.3 Extra Features .. 72

3.4.3.1 Sample and Hold .. 72

3.4.3.2 Bit-Pattern Output of ME-4680 .. 73

3.4.3.3 Synchronous Start .. 74

3.4.3.4 Offset Setting .. 75

3.4.4 Interrupt Operation .. 76

4 Function Reference ..78

4.1 General Notes .. 78

4.2 Description of the API Functions ... 79

4.2.1 Query-Functions ... 82

4.2.2 Property Functions .. 99

4.2.3 Input/Output Functions ... 107

4.2.4 Auxiliary Functions .. 158

5 Appendix ..177

A Special Operation Modes .. 177

A1 Operation Modes 8254 .. 177

A2 Pulse Width Modulation ... 179

A3 Bit-Pattern Output of ME-4680 .. 182

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

Content page 6 Meilhaus Electronic

A4 MEphisto Scope .. 184

A5 ME-MultiSig Control .. 185

B Subdevice Caps ... 187

B1 Caps in meQuerySubdeviceCaps() ... 187

B2 Caps in meQuerySubdeviceCapsArgs() .. 190

C Properties .. 191

D Error Codes ... 191

E Accessories ... 192

F Technical Questions .. 193

F1 Hotline ... 193

G Index .. 194

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

1 Introduction page 7 Meilhaus Electronic

1 Introduction

Valued customer,

Thank you for purchasing this device from Meilhaus Electronic. You have

chosen an innovative high-technology product that left our premises in a

fully functional and new condition.

Please take the time to carefully examine the contents of the package for

any loss or damage that may have occurred during shipping. If there are

any items missing or if an item is damaged, please contact us immedi-

ately.

With the Meilhaus Intelligent Driver System (ME-iDS) programming of all

supported Meilhaus devices becomes unified and simple. It was devel-

oped with the aim of offering a common programming interface to cover all

devices and all operating systems. To say it in simplified terms the concept

is based on a question and answer game between software and hardware.

The software can ask the supported devices for their components resp.

their capabilities. In the next step this information can be used to access

the appropriate functional groups of the hardware (in the following named

as „subdevices“). The ME-iDS knows the following subdevices:

ME-iDS Generation 2.0

With release 2.0 the ME-iDS API was extended by so-called „properties“.

Properties are characteristics of a device, subdevice or a channel and so

on, which can be determined via the property tree and can also be set if

applicable (see also chap. 3.3.2 from page 21). The new property func-

tions enable full access to the functionality of your device. This means a

clear expansion and a smart way of access to the feature of the hardware

for some models. The configuration of the standard function of your de-

vices - also of the new ME-5000 series - remains unaffected from that and

can also be done by the known approach.

Additionally, all properties are accessible via the ME-iDC configuration

tool, which was also extended significantly.

Note: The property functions are available with ME-iDS 2.0 and higher

and completely implemented for the ME-5000 series under Windows. For

all other devices only the general properties are supported at the moment.

In future releases of the ME-iDS this will be extended and completed more

and more.

In the chapter „Programming“ you find basic information regarding the or-

der of operation for programming. In the chapter „Function Reference“

from page 78 the functions are described in detail.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

1 Introduction page 8 Meilhaus Electronic

1.1 Supported Devices

Supported hardware Windows Notes

ME-Synapse USB/LAN ✔

ME-Axon USB/LAN ✔

ME-94/95/96 cPCI/PCI ✔ Interrupt not supported

ME-630 cPCI/PCI/PCIe ✔

ME-1000 Serie cPCI/PCI ✔

ME-1400 Serie cPCI/PCI ✔ OSC output only supported
in Linux

ME-1600 Serie cPCI/PCI ✔

ME-4600 Serie cPCI/PCI/PCIe ✔

ME-5001 ✔ Plug-on board for ME-5000
series

ME-5002 ✔ Plug-on board for ME-5810

ME-5004 ✔ Plug-on board for ME-5000
series

ME-5100 cPCI/PCIe ✔

ME-5310 Serie PCIe/PXIe ✔

ME-5314 Serie PCIe/PXIe ✔

ME-5351 Serie PCIe/PXIe ✔

ME-5810(/S) cPCI/PCIe ✔

ME-5820 ✔

ME-6000 Serie cPCI/PCI ✔

ME-8100 Serie cPCI/PCI ✔

ME-8200 Serie cPCI/PCI/PCIe ✔

MEphisto-Digi (ME-1400 USB) ✔ *

MEphisto-Opto (ME-8200 USB) ✔ *

MEphisto-Scope (UM202, UM203) ✔ limited functionality

MEphisto-Switch (ME-630 USB) ✔ *

Table 1: Supported hardware

*MEphisto-Digi, MEphisto-Opto and MEphisto-Switch are not supported with 64-bit oper-

ating systems.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

1 Introduction page 9 Meilhaus Electronic

1.1.1 Use in Accordance with the Requirements

The PC boards of the ME-series are designed for acquisition and output of

analog and digital signals with a PC. Depending on type install the models

of the ME-series into:

 a free PCI Express slot (PCIe versions) or

 a free CompactPCI slot (3 HE cPCI versions)

For information on how to install a plug-in board or connect a USB device,

please read the manual of your PC.

Please note the instructions and specifications as presented in this manual

(Appendix A, Specifications):

 Please ensure sufficient heat dissipation for the board within the PC

housing.

 All unused inputs should be connected to the ground reference of the

appropriate functional section. This avoids cross talk between the in-

put lines.

 The opto-isolated inputs and outputs achieve an electrical isolation of

the application relative to PC ground.

 Note that the computer must be powered up prior to connecting sig-

nals by the external wiring of the board.

 As a basic principle, all connections to the board should only be made

or removed in a powered-down state of all components.

 Ensure that no static discharge occurs while handling the board or

while connecting/disconnecting the external cable.

 Ensure that the connection cable is properly connected. It must be

seated firmly on the D-Sub connector and must be tightened with both

screws, otherwise proper operation of the board cannot be guaran-

teed.

1.1.2 Improper Application

PC plug-in boards for the PCI-, PCI-Express- or CompactPCI-bus may not

be taken into operation outside of the PC. Never connect the devices with

voltage-carrying parts, especially not with mains voltage. As power supply

for the USB models only an authorized power adaptor may be used.

Make sure that no contact with voltage-carrying parts can happen by the

external wiring of the device. As a basic principle, all connections should

only be made or removed in a powered-down state.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

1 Introduction page 10 Meilhaus Electronic

1.1.3 Unforeseeable Misapplications

The device is not suitable to be used as a children’s toy, in the household

or under unfavourable environmental conditions (e.g. in the open). Appro-

priate precautions to avoid any unforeseeable misapplication must be

taken by the user.

1.2 System Requirements

The Meilhaus Intelligent Driver System supports Windows 2000/XP/Vista

and Windows 7 (32-bit and 64-bit* versions available). The driver system

supports multiprocessor systems.

*MEphisto-Digi, MEphisto-Opto and MEphisto-Switch are not supported with 64-bit oper-

ating systems.

1.3 Naming Conventions

The API functions of the ME-iDS function library are valid for all supported

cPCI/PCI/PCIe boards and USB devices, if the feature is supported by the

respective device type. The function name consists of the prefix “me“ and

several components representing the respective function as descriptive as

possible (e.g. "IO" for input/output function).

For the description of the functions, the following standards will be used:

function names are written italic in the body text e.g. meI-

OStream Red().
<Parameter> Parameters follow the Hungarian notation and

are written in brackets in font Courier.

p – pointer
i – integer
f – float
d – double
c – char(string)

[square brakets] are used to indicate physical units.
main (…) Parts of programs will be in Courier type.

1.4 Documentation

The 3 pillars of documentation in the context of ME-iDS:

1. This ME-iDS manual offers a largely general description of concept

and programming as well as an extensive function reference (quick access

via the ME-iDS system tray or by the Windows start menu).

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

1 Introduction page 11 Meilhaus Electronic

2. The ME-iDS help (CHM file format) will be installed automatically

(quick access via the ME-iDS system tray or by the Windows start menu).

It covers the following items:

 Hardware specific aspects of programming.

 Example code.

 Constant definition (see also medefines.h).

 Listing of error codes.

 Listing of properties.

 Frequently asked questions (FAQs).

 Version history.

3. Hardware manuals describe the particular hardware (settings, pinouts,

specifications).

.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

2 Installation page 12 Meilhaus Electronic

2 Installation

2.1 Installation under Windows

Please refer to the installation instructions for Windows in the readme files

contained in the ME-iDS package.

Please note! If you have already installed a ME-iDS revision 1.2.x or older

on your computer you must uninstall this version with the program

„meIDSWin-Remove.exe“ before installing ME-iDS revision 1.3.0 or newer.

„meIDS-WinRemove.exe“ can be found in the path „C:\Meilhaus\ME-

iDS\install“ by default.

Please note: it is necessary to install the ME-iDS driver software before

installing the hardware. This is of particular relevance for an initial installa-

tion under Windows 7. Otherwise a proper installation and operation can-

not be guaranteed.

2.2 Configuration Utility (ME-iDC)

The Meilhaus Intelligent Device Configuration Utility (ME-iDC) makes it

easier to keep the overview and offers options for convenient configura-

tion. ME-iDS and ME-iDC communicate through the configuration file me-

config.xml.

In Windows the utility is installed automatically and can be run either from

the ME system tray icon in the info area of the task bar or via the entry

„Meilhaus ME-iDS“ in the Windows start menu.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

2 Installation page 13 Meilhaus Electronic

Diagram 1: ME-iDC

The most important functions of the configuration utility:

 Device information can be checked easily. The structure of the in-

stalled devices is shown.

 Properties can be determined as set if applicable. The structure of the

property tree can be shown.

 The device index (Parameter <iDevice>) used to access a device

can be changed.

 Accessories can be registered at the driver system. It simplifies pro-

gramming considerably.

 „Memory function“ for devices which are removed from the system tem-

porarily.

 Deleting devices which have been removed from the system.

 Changing the subdevice configuration.

 Loading a new firmware.

 Registering remote devices like ME-Synapse-LAN.

A detailed desciption can be found in the ME-iDC help file.

2.2.1 Subdevice Configuration

On some models the standard functionality of subdevices can be changed

by the user selecting an alternative configuration. The designated configu-

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

2 Installation page 14 Meilhaus Electronic

ration will be activated before starting your application via the ME-iDC con-

figuration tool. With the standard configuration (ID 0) the subdevice is

ready-to-run at once.

Diagram 2: Subdevice Configuration

2.2.2 Firmware Configuration

On some models the standard functionality of the device can be changed

by the user selecting an alternative firmware. See ME-iDC help for this

procedure.

2.2.3 Registering a Remote Device

The access to a remote device (e.g. ME-Synapse LAN) under Windows

via the ME-iDS API assumes the installation of a so-called ONC RPC cli-

ent software for Windows, which requires buying a licence key. The abbre-

viation ONC RPC means „Open Network Computer Remote Procedure

Call“.

The used „ONC RPC/XDR for C/C++ Client Runtime“ software from Dis-

tinct implements the Sun Microsystems RPC standard on your Windows

computer. By the remote procedure calls (RPC) an application will be able

to communicate with ONC RPC clients via a TCP/IP based network, as

data are transferred using the external data representation (XDR) in a for-

mat independent of the processors and operating systems involved.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

2 Installation page 15 Meilhaus Electronic

To install the RPC software choose the option „Network Installation“ in the

ME-iDS installation program. A separate installation program will be

started. Within this procedure a licence key must be entered.

Please note that you need separate keys for 32-bit and 64-bit version of

the RPC software. If you haven’t got a licence key with your product pack-

age you can buy one at Meilhaus Electronic. Please contact our sales

team (sales@meilhaus.com).

Additionally, you have to register the remote device with its IP address at

the driver system.

Proceed as follows:

 Install the ME-iDS using the setup type „Network Installation“ and enter

the licence key when asked.

 Call the ME-iDC (Config Tool) via the ME-iDS system tray or by the

Windows start menu.

 Introduce the IP address of the remote device to the driver system (see

also ME-iDC help). Click on the blue icon „Register remote devices“.

 Open the dialog and enter the current IP address.

Diagram 3: Registering IP address

2.3 Setting the IP Address

If necessary, ask your network administrator what IP address should be

used. To change the IP address of the ME-Synapse LAN and ME-Axon

LAN start a web browser and enter the default IP address (or the IP ad-

dress you have selected last). In case of the factory default address type:

http://192.168.20.228 (see also manual of the device). The IP configura-

tion page will be shown.

file://///DISKSTATION/DTP-Zwischenablage/ME_Manuals-Aktuell/ME-iDS/sales@meilhaus.com
http://192.168.20.228/

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

2 Installation page 16 Meilhaus Electronic

Diagram 4: Setting the IP Address

Static

Select „Static“ and enter the desired address in the field IPv4 address.

Write down the address (networking experts may determine the address

later for example with the „ipconfig“ command under Windows „Run…“. In-

troduce the IP address in the ME-iDC to the driver system.

Dynamic

The ME-Synapse-LAN/ME-Axon-LAN can only operate in networks with

an initial dynamic assignment of IP addresses, but which then are fixed for

every device.

Select „DHCP“. Contact your network administrator to find out the address

assigned, for example with a „ping“ command. Introduce the IP address in

the ME-iDC to the driver system.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 17 Meilhaus Electronic

3 Programming

3.1 Architecture of the Driver System

Diagram 5: Architecture of the driver system

*MEphisto-Digi, MEphisto-Opto and MEphisto-Switch are not supported with 64-bit oper-

ating systems.

The Meilhaus Intelligent Driver System (ME-iDS) offers a unified program-

ming interface (API) covering different devices and operating systems. It is

structured into the level „user space“ with the function library, the level

„kernel space“ with the main driver and device-specific driver modules and

finally the hardware level. For remote access via a network under Win-

dows an ONC RPC software from Distinct with license is required (see

chap. 2.3.3 on page 14), which is not included with the standard ME-iDS

package.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 18 Meilhaus Electronic

3.1.1 Library Files

There are library files in versions without (local) and with RPC support for

remote access via network.

Windows

Under Windows the local version is installed by default. Users can choose

RPC support as an option (please select it only if you have a valid RPC li-

cense available).

Diagram 6: Library Files

Note: The local version is smaller and faster. The time to establish the

connection to a remote device can be very long, especially if a device is

not active.

3.2 Language Support

Below you can find an overview of programming languages and develop-

ment environments, which are supported by default with the ME-iDS.

The ME-iDS can be found on the CD/DVD supplied or under www.meil-

haus.de/download.

file://///DISKSTATION/DTP-Zwischenablage/ME_Manuals-Aktuell/ME-iDS/www.meilhaus.de/download
file://///DISKSTATION/DTP-Zwischenablage/ME_Manuals-Aktuell/ME-iDS/www.meilhaus.de/download

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 19 Meilhaus Electronic

3.2.1 High-Level Language Support

To make programming as easy as possible we provide simple examples

and small projects with source code for each of the languages. The pro-

gramming examples will be provided as a ZIP file and can be downloaded

(see: www.meilhaus.com/download).

Note also the instructions in the appropriate README-files.

 Windows

C/C++ Visual C++, C++ Builder

Visual Basic Visual Basic 6.0, Visual Basic.NET

Visual C# ✔

Delphi ✔

Table 2: High-level language support

3.2.2 Graphical Programming Tools

For programming with graphical programming environments like Agilent

VEE or LabVIEWTM you can use predefined objects („user objects“ resp.

“virtual instruments”) and demos which can be included in your project

easily.

 Windows

Agilent VEE ✔

LabVIEW ✔

Table 3: Graphical Programming Tools

file://///DISKSTATION/DTP-Zwischenablage/ME_Manuals-Aktuell/ME-iDS/www.meilhaus.com/download

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 20 Meilhaus Electronic

3.3 Concept of the Library

The concept of the ME-iDS (Meilhaus Intelligent Driver System) can be de-

scribed as a hierarchical, single rooted tree. All hardware is organized ac-

cording to the following generic hierarchy.

3.3.1 Hierarchy Levels

- „Driver“: Logical representation of a whole system as a set of de-

vices. Root of hierarchy tree.

 Device: A device represents a single hardware unit with one or

more so-called subdevices. Each device has its own, unique and

unchangeable serial number. To each device a device index is

assigned by which it is addressed when calling the functions of

the ME-iDS API (parameter <iDevice>).

Important: There is no strict binding between a physical device

(hardware) and the device index used to address it. Device indi-

ces are assigned dynamically during initialization (on calling me-

Open…()) and may vary from one application start to the next.

For this reason, the meQuery...() routines should be used to de-

termine the correct device index for a particular physical device

as demonstrated in the programming examples contained in the

ME-iDS Software Developer Kit (SDK).

Note: For information how to assign a fixed device index to a

particular hardware unit, please refer to the ME-iDC (Config

Tool) help.

 Subdevice: Logical representation of a functional unit

(example: analog input). Each subdevice is assigned a

subdevice index to be passed when calling the functions

of the ME-iDS API (parameter <iSubdevice>). Subde-

vice indices start at 0 and are assigned statically. Two de-

vices of the same type will contain the same subdevices

in the same order.

Important: Each model has its own way of counting the

subdevices. Two models of the same family may have dif-

ferent sets of subdevices and so a particular subdevice

may have different subdevice indices on two models. For

example: the external interrupt (EXT_IRQ) on the ME-

1400A has the subdevice index '6' but on the ME-1400B it

has the subdevice index '12'. For this reason, the

meQuery...() routines should be used to determine correct

subdevice indices for a particular subdevice as demon-

strated in the programming examples contained in the

ME-iDS SDK.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 21 Meilhaus Electronic

 Channel: The lowest-level of hardware compo-

nents represents a single data channel, e.g.: an in-

put or output line (digital, analog, etc.). Each chan-

nel can have several parameters, such as: range,

reference, polarity (unipolar, bipolar), etc.

3.3.2 Properties

With version 2.0 the ME-iDS-API has been extended by the so-called

„Properties“. „Properties“ are characteristics of a device, a subdevice or a

channel and so on, which are organized by a tree structure. By the so

called property path you have access to all properties and attributes, you

can determine their value and you can set them if applicable. The names

of the properties are pre-defined.

There are properties of access type „Read only“, which can only be read,

e.g. the type of a subdevice (DI, DO, DIO, AI etc.) and those of access

type „Read/Write“ e.g. the direction of a bidirectional port, which can be

determined (read) as well as set (written).

In the following diagram you see a typical property tree as you can show it

via the ME-iDC:

Diagram 7: Property tree

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 22 Meilhaus Electronic

Note: The property functions are available with ME-iDS 2.0 and higher

and completely for the ME-5000 series under Windows. For all other de-

vices only the general properties are supported at the moment. In future

releases of the ME-iDS this will be extended and completed more and

more.

3.3.2.1 Property Pathes

Properties are collected together in containers. A container contains prop-

erties and can also contain other containers. By this way, all the properties

for the system are organized hierarchically like a tree structure.

Diagram 8: Tree structure

The root of the property tree is a container represented by two consecutive

backslashes "\\". The components of a property path are separated by one

backslash "\".

To access a property the entire path to the property from the root "\\"

through all the intervening containers, separated by one backslash and

ending with the property name must be used.

For example, to access the subdevice type of subdevice 0 on device 0 the

correct property path is:

"\\Devices\Device0\Subdevices\Subdevice0\Type“

A backslash must not be appended to the end of a property path.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 23 Meilhaus Electronic

Note: Depending on the programming language you use, the backslash

might be an escape character (e.g. C, C++, C#). In this case in the source

code two backslashes must be used to represent one backslash in a prop-

erty string. For example: \\\\Devices\\Device1.

3.3.2.2 Abbreviations for Property Pathes

For convenience several abbreviations exist to shorten a property path.

The following properties resp. containers can be abbreviated:

 Devices:

"\\Devices\Device1" can be abbreviated:

"\\Device1"

 Subdevices:

"\\Device1\Subdevices\Subdevice0" can be abbreviated:

"\\Device1\Subdevice0"

 Channels:

"\\Device1\Subdevice0\Channels\Channel7" can be abbreviated:

"\\Device1\Subdevice0\Channel7"

 Configurations:

"\\Device1\Subdevice0\Configurations\Configuration0" can be abbrevi-

ated: \\Device1\Subdevice0\Configuration0.

3.3.2.3 Property Functions

The property functions are implemented as ANSI and Unicode (UTF-16)

versions. The ANSI version have suffix 'A' and use NULL terminated ANSI

strings (char*). The unicode version with the suffix 'W' use wide character

strings (wchar_t*).

Depending on the property type (see chap. 3.3.2.5 on page 26) the appro-

priate function must be used to read resp. write the value (see also func-

tion reference from page 78).

Note: In the following the ANSI routines are used. But all examples are

also valid for unicode functions

3.3.2.3.1 Reading Property Values

The following functions are available for reading access to properties:

ANSI:

int mePropertyGetIntA(char* pcPropertyPath, int* piValue)

Reads a property as 32-bit-signed integer value.

int mePropertyGetDoubleA(char* pcPropertyPath, double* pdValue)

file://///DISKSTATION/Devices/Device1
file://///Device1/Subdevice0/Configuration0

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 24 Meilhaus Electronic

Reads a floating point property as 64-bit double value.

int mePropertyGetStringA(char* pcPropertyPath, char* pcValue, int iBuff-

erLength)

Reads a string property as a NULL terminated ANSI character array.

Unicode:

int mePropertyGetIntW(wchar_t* pcPropertyPath, int* piValue)

Reads a property as 32-bit-signed integer value.

int mePropertyGetDoubleW(wchar_t* pcPropertyPath, double* pdValue)

Reads a floating point property as 64-bit double value.

int mePropertyGetStringW(wchar_t* pcPropertyPath, wchar_t* pcValue, int

iBufferLength)

Reads a string property as a NULL terminated unicode character array.

3.3.2.4 Attribute

Properties and containers have so-called attributes which can also be ac-

cessed to with the property functions. Simply add an additional back-slash

„\“ to the property path followed by the attribute name. Attributes provide

additional information concerning properties and/or containers, e.g. the

data type of the property, whether the access type is read only or writable

too, the number of elements a container holds etc.

Examples for attributes:

Name Defined for … Type Possible values

NumberOfEle-

ments
Container Integer

-

PropertyName
Properties &
Container

String
-

PropertyType Properties &
Container

Define ME_PROPERTY_TYPE_CON-
TAINER, ME_PROP-
ERTY_TYPE_BOOL,
ME_PROPERTY_TYPE_INT,
ME_PROPERTY_TYPE_DOU-
BLE,
ME_PROPERTY_TYPE_STRING,
ME_PROPERTY_TYPE_DEFINE

PropertyAc-

cess
Properties Define ME_PROPERTY_AC-

CESS_READ_ONLY, ME_PROP-
ERTY_ACCESS_READ_WRITE

Table 4: Attributes (for example)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 25 Meilhaus Electronic

All attributes with a short description can be found in the ME-iDS help file

(*.chm) under „Related Pages“-„Properties“.

For example the attribute "NumberOfElements" is defined for any con-

tainer, but not for properties. It is a read only integer value which can be

queried using the mePropertyGetIntA() function. To find out how many ele-

ments (Containers and properties) are in the root container you can call

(the number of elements is returned by parameter <piValue>):

mePropertyGetIntA("\\NumberOfElements", int* piValue);

Once you know how many elements a container holds you can address

the elements even without knowing their names by using an index. So, if

you have found out that the root container holds 7 elements, then you can

address these elements as "\\0", "\\1", ... "\\6".

Using the attribute "PropertyName" you can query the name of each ele-

ment of the container. So, to find the name of the first element (with index

0) in the root container you can call:

mePropertyGetStringA("\\0\PropertyName, char* pcValue, int iBuffer-

Length);

The name of the property is returned by parameter <pcValue>.

Once you know the name of a property, you can use this name instead of

the index to address the property. So, if the name of the first element in

the root container is "LibraryVersion" then you can find the type of this

property by calling either:

mePropertyGetIntA("\\0\PropertyType", int* piValue); or...

mePropertyGetIntA("\\LibraryVersion\PropertyType", int* piValue);

The result is the same.

In this way you can find the names and types of all the elements of the

root container. Some of these elements will themselves be containers. You

can use the same procedure to find the names and types of the elements

in these containers.

For instance, the root container holds a container called "Devices". To find

out how many elements are in this container you can call:

mePropertyGetIntA("\\Devices\NumberOfElements", int* piValue);

Next you can find out the name of the first element (with index 0) in this

container and so on:

mePropertyGetStringA("\\Devices\0\PropertyName, char* pcValue, int

iBufferLength);

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 26 Meilhaus Electronic

In this way you can recursively investigate the entire property tree. The ex-

ample program Con_meIDSSystemProperties im ME-iDS SDK shows

how this can be done using C++ source code in a small console program.

3.3.2.5 Property Types

The attribute "PropertyType" is defined for all properties and containers. If

"P" is the path to a property or container then the following function call is

always valid:

mePropertyGetIntA("P\PropertyType", int* piValue)

The property type is returned in <piValue> and is one of the following

defines:

 ME_PROPERTY_TYPE_CONTAINER:

"P" is a container which itself contains further properties and contain-

ers.

 ME_PROPERTY_TYPE_BOOL:

"P" is a two-valued property, for example Off/On, False/True, No/Yes

etc. The value can be queried with the function mePropertyGetIntA()

and in some cases set with the function mePropertySetIntA(). The

value is 0 for False or 1 for True. The value can be also queried using

the mePropertyGetStringA() functions. These return a readable ver-

sion of the value, e.g. for display purposes.

 ME_PROPERTY_TYPE_INT:

"P" is an integer property. The signed 32-bit integer value can be que-

ried with the function mePropertyGetIntA() and in some cases set with

the function mePropertySetIntA(). The value can be also queried using

the mePropertyGetStringA() functions. These return a readable ver-

sion of the property value, e.g. for display purposes.

 ME_PROPERTY_TYPE_DOUBLE:

"P" is a double property. The 64-bit floating point double value can be

queried with the function mePropertyGetDoubleA() and in some cases

set with the function mePropertySetDoubleA(). The value can be also

queried using the mePropertyGetStringA() functions. These return a

readable version of the property value, e.g. for display purposes.

 ME_PROPERTY_TYPE_STRING:

"P" is a string property, a NULL terminated character sequence. The

value can be queried with the function mePropertyGetStringA() and in

some cases set with the function mePropertySetStringA()

 ME_PROPERTY_TYPE_DEFINE:

"P" is a define property. It can take one of a limited number of prede-

fined constant values. The value can be queried with the function me-

PropertyGetIntA() and in some cases set with the function meProper-

tySetIntA(). The value can be also queried using the meProperty-

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 27 Meilhaus Electronic

GetStringA() functions. These return a readable version of the define,

e.g. for display purposes.

The value of a property can be queried by using the property path without

an attribute in the appropriate mePropertyGet... function (see above). For

example, to query the value of the property "LibraryVersion" mentioned

above in the root container you can call either the function

mePropertyGetIntA("\\LibraryVersion", int* piValue)

...which returns the library version asan integer in parameter

<piValue> or call the function:

mePropertyGetStringA("\\LibraryVersion", char* pcValue, int iBufferLength)

...which returns the library version in the form of a string in <pcValue>.

3.3.2.6 Access Type of Properties

The attribute "PropertyAccess" indicates if a property is read only or writa-

ble as well. The property access is defined for all properties, but not for

containers.

Example for path of property "ClockSource". The device index is 1, the

subdevice should be of type counter with index 2. The property path "P" is

defined as follows:

\\Devices\Device1\Subdevices\Subdevice2\ClockSource.

The following function call is valid:

mePropertyGetIntA("P\PropertyAccess", int* piValue)

The property access is returned in parameter <piValue> and is one of

the following defines:

 ME_PROPERTY_ACCESS_READ_ONLY:

The value of the property "P" can only be read.

 ME_PROPERTY_ACCESS_READ_WRITE:

The value of the property "P" can be read and written.

file://///Devices/Device1/Subdevices/Subdevice2/ClockSource

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 28 Meilhaus Electronic

3.3.2.7 System Attributes

These properties are elements of the root container "\\" and can therefore

be accessed via the path "\\<Property name>".

Name Type Access type

LibraryVersion Integer Read only

MainDriverVersion Integer Read only

NumberOfDevices Integer Read only

Devices Container -

Table 5: System attributes

3.3.2.8 General Device Properties

The following properties are available for every device in ME-iDS. The

path to a device with the index X reads as:

"\\Devices\X\<Property name>" or...

"\\Devices\DeviceX\<Property name>"

or abbreviated...

"\\DeviceX\<Property name>"

Example: Property "Plugged" for device with index 0 "\\Devices\De-

vice0\Plugged" or... "\\Device0\Plugged"

Name Type Access type Possible values

Name
String Read only -

DriverName
String Read only -

DriverVersion
Integer Read only -

Description
String Read only -

SerialNumber
Integer Read only -

BusType
Define Read only ME_BUS_TYPE_PCI,

ME_BUS_TYPE_USB,
ME_BUS_TYPE_LAN_PCI,
ME_BUS_TYPE_LAN_USB

AccessType
Define Read only ME_ACCESS_TYPE_LOCAL,

ME_ACCESS_TYPE_REMOTE

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 29 Meilhaus Electronic

Plugged
Boolean Read only -

NumberOfSubde-

vices

Integer Read only

Subdevices
Container - -

Table 6: General device properties

3.3.2.9 Subdevice Properties

The following properties are available for every subdevice in ME-iDS. The

path to a subdevice property of subdevice Y on device X reads as:

"\\Devices\DeviceX\Subdevices\Y\<Property name>" or...

"\\Devices\DeviceX\Subdevices\SubdeviceY\<Property name>"

or abbreviated....

"\\DeviceX\SubdeviceY\<Property name>"

Name Type Access type

Typ Define Read only

Subtype Define Read only

NumberOfChannels Integer Read only

Configurable Boolean Read only

Table 7: General subdevice properties

If the boolean property “Configurable”is True then the following three sub-

device properties also exist:

Name Type Access type

NumberOfConfigura-

tions

Integer Read only

CurrentConfiguration Integer Read only

Configurations Container

Table 8: Properties for configurable subdevices

3.3.2.10 Properties of Configuration Containers

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 30 Meilhaus Electronic

The Container "Configurations" contains "NumberOfConfigurations" ele-

ments, which describe the available subdevice configurations:

The path to a property of configuration Z from subdevice Y on device X

reads as:

"\\Devices\DeviceX\Subdevices\SubdeviceY\Configurations\Z\

<Property name>" or...

"\\DeviceX\SubdeviceY\Configurations\ConfigurationZ\<Property name>"

or abbreviated....

"\\DeviceZ\SubdeviceY\ConfigurationZ\<Property name>"

Name Type Access type

SubdeviceType Define Read only

SubdeviceSubtype Define Read only

NumberOfChannels Integer Read only

Table 9: Properties of configuration containers

3.3.3 Subdevices

The ME-iDS knows the following subdevices:

 Analog input (ME_TYPE_AI)

 Analog output (ME_TYPE_AO)

 Digital input/output (ME_TYPE_DIO)

 Digital input (ME_TYPE_DI)

 Digital output (ME_TYPE_DO)

 Frequency input/output (ME_TYPE_FIO)

 Frequency input (ME_TYPE_FI)

 Frequency output (ME_TYPE_FO)

 Counter (ME_TYPE_CTR)

 External interrupt (ME_TYPE_EXT_IRQ)

 FPGA (ME_TYPE_FPGA) - planned!

3.3.3.1 Analog Input/Output

Subdevice types for analog ports:

 Input (ME_TYPE_AI)

 Output (ME_TYPE_AO)

meQueryNumberChannels() returns the number of available input or out-

put channels.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 31 Meilhaus Electronic

3.3.3.2 Digital Input/Output

Subdevice types for digital ports:

 Input (ME_TYPE_DI)

 Output (ME_TYPE_DO)

 Bi-directional (ME_TYPE_DIO)

meQueryNumberChannels() returns the size in bits of a digital subdevice.

3.3.3.3 Frequency Input/Output

Subdevice types for frequency input and output:

 Input (ME_TYPE_FI)

 Output (ME_TYPE_FO)

 Bi-directional (ME_TYPE_FIO)

Note: The subdevices above are only supported in operation mode Single.

3.3.3.4 Counter

Subdevice type for counters of type 8254:

 Counters of type 8254 (ME_TYPE_CTR)

Counter subdevices have always one channel (with index 0). The corre-

sponding parameter <iChannel> in the ME-iDS API functions should al-

ways be set to '0'. meQueryNumberChannels() always returns '1'.

Trigger options are not possible.

3.3.3.5 Interrupt

Subdevice type for external interrupt inputs:

 External interrupt (ME_TYPE_EXT_IRQ)

meQueryNumberChannels() returns the number of interrupt channels. An

interrupt subdevice is always of sub-type ME_SUBTYPE_SINGLE. For in-

terrupt handling the following functions are available.

 meIOIrqStart(): Configure and start interrupt subdevice.

 meIOIrqStop(): Stop interrupt subdevice.

 meIOIrqWait(): Event listener waits for interrupt.

 meIOIrqSetCallback(): By this function you can install an user-defined

callback function, waiting for an interrupt in background.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 32 Meilhaus Electronic

Note: The current state of an interrupt line cannot be read via meI-

OSingle().

3.3.3.6 “FPGA” (planned)

Planned - all information preliminary! Subdevice type ME_TYPE_FPGA

(FPGA = „Free Programmable Gate Array“) is for subdevices who´s func-

tionality can be designed by the user with the appropriate special know-

how. A development software for the firmware design of the appropriate

FPGA chip is required.

3.3.4 Structure of the API

The ME-iDS concept of getting properties can be described as „question

and answer game“. The software can resp. must check the supported de-

vices for their subdevices and capabilities. With this information you can

configure your hardware in the next step and finally access to it.

The whole ME-iDS API can be divided into four groups:

 Query functions

 Property functions

 Input/Output functions

 Auxiliary functions

3.3.4.1 Query Functions

Using the query functions, all the properties of the system, a particular de-

vice or a particular subdevice can be determined at run-time.

 System queries

 Device queries

 Subdevice queries

 Range queries

3.3.4.2 Property Functions

With the so-called property functions you have the possibility to read and if

applicable to write all general and hardware specific properties and attrib-

utes. The entity of all properties is like a tree structure. By the so-called

property path you can access to a device, a subdevice, a channel or a

range and so on. See also chap. 3.3.2 from page 21.

Note: The property functions are available with ME-iDS 2.0 and higher

and completely implemented for the ME-5000 series under Windows. For

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 33 Meilhaus Electronic

all other devices only the general properties are supported at the moment.

In future releases of the ME-iDS this will be extended and completed more

and more.

The property functions are implemented as ANSI and Unicode (UTF-16)

versions. The ANSI version have suffix 'A' and use NULL terminated ANSI

strings (char*). The unicode version with the suffix 'W' use wide character

strings (wchar_t*).

 Reading properties

 Writing properties

3.3.4.3 Input/Output Functions

Prepare and execute data input and output.

 Reset functions

 Interrupt functions

 Single operation

 Streaming operation

3.3.4.4 Auxiliary Functions

 Driver initialization

 Protection functions

 Error handling functions

 Utility functions

3.3.5 Basic Procedure

3.3.5.1 Initialization

Before calling functions accessing to devices of the ME-iDS, the ME-iDS

has to be initialized once. The function meOpen() does the initialization for

the whole driver system:

 Determination of the physically available devices and comparison with

the devices in the device configuration which is saved with the ME-iDS.

 Changing of an alternative subdevice configuration.

 Establishes a connection to the driver modules.

To assure clean exit meClose() should be used at the end of a program.

This function closes the ME-iDS and de-allocates all used resources.

An application can call meOpen() and meClose() many times to refresh in-

formation about connected devices. For reinitialization of the ME-iDS

driver system first meClose() must be called prior calling meOpen().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 34 Meilhaus Electronic

3.3.5.2 Protection

To avoid concurrent access from different applications the same resources

we recommend using the meLock...() functions provided by the ME-iDS.

Diagram 9: Lock hierachy

There are three levels of locking resources:

 Driver

 Device

 Subdevice

A resource cannot be locked if:

…the resource itself or one of its sub-resources is already locked by an-

other application. For example, you cannot lock a device if one of its sub-

devices is already locked by another application.

…the resource itself or one of its sub-resources is not in idle state. For ex-

ample, you cannot lock a device if one of its subdevices is waiting for an

external trigger.

If a resource is locked by an application and a second application attempts

to call an IO function accessing the resource or one of its sub-resources

then the function returns the error code ME_ERRNO_LOCKED. If the ac-

cess to locked resourses should be allowed again, it must be done by the

application which locked the resources prior by calling the function

meLock…().

The meQuery…() and meUtility…() functions are unaffected by locks.

These routines can be called at any time by any application providing me-

Open() has been called first.

IMPORTANT: Locks only prevent concurrency among different applica-

tions (processes). If you wish to prevent concurrency among different

threads running in the same process, then you must use one of the syn-

chronization methods provided by your operating system (e.g. mutex,

semaphore etc.).

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 35 Meilhaus Electronic

If you can be sure that at any time only a single application will be access-

ing a resource (for example, if you have a single application using the ME-

iDS) then you will not need to use the meLock…() routines at all.

3.3.5.3 Error handling

All of the ME-iDS functions return the error status as an integer. See the

ME-iDS help file for a list of all error codes.

On success ME_ERRNO_SUCCESS (equal to '0') is returned. Otherwise

an error code different from ME_ERRNO_SUCCESS is returned and the

internal variable <iErrno> is set accordingly.

For convenience the ME-iDS provides the function meErrorGetMessage()

which converts error codes into a textual error description.

ME-iDS provides two functions to determine the last error occured:

 meErrorGetLast() - returns the last error code.

 meErrorGetLastMessage() - returns the error description of the last er-

ror.

NOTE: If a function tries to create a situation which already exists, then

the routine will return ME_ERRNO_SUCCESS. For example, if one of the

meLock…() routines is called to unlock a resource which is not locked,

then it will return ME_ERRNO_SUCCESS.

Common errors:

 ME_ERRNO_NOT_OPEN: ME-iDS has not been opened correctly.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested de-

vice index.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested subdevice index.

 ME_ERRNO_DEVICE_UNPLUGGED: device is physically not availa-

ble at the moment.

 ME_ERRNO_NOT_SUPPORTED: function is not supported by the

subdevice (example: meIOStreamConfig() applied to a subdevice

which is only for single operation).

For function specific errors see function reference. If necessary the user

can enable error logging:

 meErrorSetDefaultProc():

 Windows: A message box with error code and error

description is displayed. Pressing „OK“ simply dis-

misses the messagebox and pressing „Cancel“ dis-

misses the message box and suppresses its display for

future errors.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 36 Meilhaus Electronic

 meErrorSetUserProc(): call user-defined logging functions.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 37 Meilhaus Electronic

3.4 Operation Modes

3.4.1 Single Operation

This operation mode serves both the reading as well as the writing of sin-

gle values. Before any I/O operation can be carried out a subdevice has to

be configured by calling meIOSingleConfig(). meIOSingle() is then called

to carry out the I/O operation itself. Once configured, a subdevice can read

resp. write many times. Several single operations can be written to a list

and run consecutively by calling the function meIOSingle().

Diagram 10: "Single" operation mode

Important: Operations in a single list of type meIOSingle_t are per-

formed in order of entry. If an operation has to wait (e.g. for an external

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 38 Meilhaus Electronic

trigger signal) the next one also must wait. Processing a single list is

stopped if one operation fails.

3.4.1.1 Start Operation/Trigger Options

A single operation can be triggered in various ways. The parameter

<iTrigType> of the function meIOSingleConfig() determines the kind of

trigger used and the options available here depend on the subdevice in

question. Here is a list of the available trigger types:

 No trigger available (ME_TRIG_TYPE_NONE):

Some subdevices (like counter) have no triggering options. The

operation is always performed immediately after calling meI-

OSingle(). No timeout is available.

 Software trigger (ME_TRIG_TYPE_SW):

Subdevice is read resp. written directly after calling meI-

OSingle() or via the synchronous list (see page 80).

 External digital trigger (ME_TRIG_TYPE_EXT_DIGITAL): Subdevice

can be triggered by an external trigger event. The digital trigger can be

used to start the synchronous list (see page 80).

 External analog trigger (ME_TRIG_TYPE_EXT_ANALOG): Subdevice

can be triggered by an external analog signal analysed by an internal

comparator (see the following diagram).

Diagram 11: Analog trigger

NOTE: Analog trigger has certain hysteresis behaviour. For details see the

appropriate hardware manual.

External trigger can be configured via the parameter <iTrigEdge> to act

on rising, falling or any trigger edge.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 39 Meilhaus Electronic

Diagram 12: Trigger edges

Parameter <iTrigChan> is used for adding entries to a synchronous list.

For details see chapter "Synchronous Start" on page 74.

NOTE: Please check hardware manual for possible triggering modes.

IMPORTANT: Parameters passed in meIOSingleConfig() and meIO- Sin-

gle(), like <iChannel>, have different meanings depending on subdevice

type. Detailed infos ca be found in the ME-iDS help file.

3.4.1.2 Analog Input/Output

Values are read and written as integers. They can be converted into physi-

cal units with the function meUtilityPhysicalToDigital(). The function meU-

tilityDigitalToPhysical() provides the opposite conversion. The parameters

<dMin>, <dMax> and <iMaxData> in the conversion functions must cor-

respond to the parameters <pdMin>, <pdMax> and <piMaxData> (see

meQueryRangeInfo()) of that range which is used in parameter <iSin-

gleConfig> of the function meIOSingleConfig().

ME-iDS provides several functions that help the user to find the most suit-

able range for a particular input or output operation.

 meQueryNumberRanges(): returns the number of available ranges for

a particular subdevice.

 meQueryRangeInfo(): returns the parameters which define the chosen

range:

 <piUnit> Physical unit (e.g.: ME_UNIT_VOLTS for Volts).

 <pdMin> Lower range limit of selected physical unit.

 <pdMax> Upper range limit of selected physical unit.

 <piMaxData> Integer value representing the digital resolu-

tion (e.g.: 65535 for 16-bit resolution). The lower range limit

is always 0.

 meQueryRangeByMinMax(): returns the index of the most suitable

range. This is the smallest range which includes the given minimum

and maximum values.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 40 Meilhaus Electronic

The ground reference for analog measurements has to be configured us-

ing the parameter <iRef>. With differential measurements only bipolar in-

put ranges can be used (see also ME-iDS help file and hardware manual).

3.4.1.3 Digital Input/Output

Basically digital ports have to be configured using the function meI-

OSingleConfig() before a read or write operation is carried out. The pins of

a bidirectional subdevice are set to input after a reset to avoid undefined

signal levels. Because of the configuration can be done in various bit width

(bit, byte, word,…) - depending on hardware - the name „blocks“ was intro-

duced. The parameter <iChannel> represents the index of the block to

be configured (see also function meQuerySubdeviceCaps() on page 104).

The function meQuerySubdeviceCaps() returns the width of a block. For

example: ME_CAPS_DIO_DIR_BYTE means, that the port has to be con-

figured with the block size of a byte. It is not possible to configure bit 0 as

input and the other seven bits as output. Compared to this

ME_CAPS_DIO_DIR_BIT means that the block size is one bit and every

bit can be configured independently. With the flag ME_IO_ SINGLE_CON-

FIG_NO_FLAGS all channels of the subdevice will be used.

The parameter <iSingleConfig> defines the direction of a block. There

are different hardware implementations possible. If only standard in-

put/output operations are possible use ME_SINGLE_CONFIG_ DIO_IN-

PUT or ME_SINGLE_CONFIG_DIO_OUTPUT. Otherwise please refer to

the ME-iDS help file and the hardware manual for availability and default

setting.

For example the opto-isolated boards ME-5810 and ME-8100 provide out-

put buffers with additional features:

 Output with sink driver

(ME_SINGLE_CONFIG_DIO_SINK)

 Output with source driver

(ME_SINGLE_CONFIG_DIO_SOURCE)

 High impedance state

(ME_SINGLE_CONFIG_DIO_HIGH_IMPEDANCE)

A read or write operation with function meIOSingle() requires the port

width in parameter <iFlags> for each entry (ME_IO_SINGLE_

TYPE_DIO_...). Parameter <iChannel> represents the index of the block

to be accessed. With the flag ME_IO_SINGLE_CONFIG_NO_ FLAGS all

channels of the subdevice will be used.

If you want to output a timer-controlled bit pattern with the ME-4680 to one

(or several) digital ports, pass ME_SINGLE_CONFIG_DIO_BIT_PAT-

TERN in the parameter <iSingleConfig> of function meIOSingleCon-

fig() and set the parameter <iRef> to ME_REF_DIO_ FIFO_LOW resp.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 41 Meilhaus Electronic

ME_REF_DIO_FIFO_HIGH. Otherwise use ME_REF_NONE. For details

see chap. 3.4.3.2 „Bit-Pattern Output of ME-4680“ on page 73 and appen-

dix A3 from page 182.

3.4.1.4 Frequency Input/Output

A subdevice for frequency measurement (input) resp. pulse output (pulse

generator) can contain one or more channels. The assignment of the

channels to the subdevices can be found in the ME-iDS help file.

Basically a subdevice of type “ME_TYPE_FI“, “ME_TYPE_FO“ or

“ME_TYPE_FIO“ must be configured for operation mode single using the

function meIOSingleConfig(). The number of channels can be queried with

the function meQueryNumberChannels(). Pass the index of the channel in

parameter <iChannel>.

To describe the rectangular signal two variables have been introduced,

which apply for input and output likewise. The one value defines the period

T and the other value the first phase of the period t1P. When measuring

frequency the measurement starts on the first positive edge and ends with

the consecutive positive edge. The negative edge between defines the

end of the first phase. In pulse generator operation the output starts with a

high level and toggles to low after the end of the first phase.

Diagram 13: Signal definition

Note: according to the system clock different values for the maximum pe-

riod Tmax are valid depending on the duty-cycle. There is a difference be-

tween rectangular signals with asymmetrical duty-cycle Tmax.asym. and sym-

metrical duty-cycle Tmax.sym.

As a rule it applies: Tmax.asym. = ½ Tmax.sym.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 42 Meilhaus Electronic

3.4.1.4.1 Frequency Measurement

Using the operation mode frequency measurement (FI=“Frequency Input“)

you can determine the period and duty-cycle of rectangular signals. Each

frequency input channel will be accessed as subdevice of type

ME_TYPE_FI, sub-type ME_SUBTYPE_SINGLE. The functions

meQuery…(), meIOSingleConfig(), meIOSingle() und meIOSingleTicks-

ToTime() are relevant:

 Determine subdevice by the meQuery…() functions.

 Configuration of the subdevice by the function meIOSingleConfig():

 Pass the channel index in parameter <iChannel>

 Pass ME_SINGLE_CONFIG_FIO_INPUT in the parameter

<iSingleConfig>

 The parameters <iRef>, <iTrigChan>, <iTrigType> and

<iTrigEdge> are not required here. Please pass

ME_VALUE_NOT_USED.

 Pass ME_IO_ SINGLE_CONFIG_FI_SINGLE_MODE in pa-

rameter <iFlags>.

 To read period and duration of the first phase of the period you have to

call the function meIOSingle() twice. Depending on the option in pa-

rameter <iFlags> either the total period (in ticks) or the duration of

the first phase of the period (in ticks) will be returned in parameter

<iValue>.

For standard operation we recommend the following procedure:

1. Reading the period by bitwise OR-linking the flags: ME_IO_SIN-

GLE_TYPE_FIO_TICKS_TOTAL „or“ ME_IO_SINGLE_TYPE_

NONBLOCKING.

2. Reading the duration of the first period by bitwise OR-linking the

flags: ME_IO_SINGLE_TYPE_FIO_TICKS_FIRST_PHASE „or“

ME_IO_SINGLE_TYPE_NONBLOCKING.

For repeated acquisition of slow frequencies the following version is possi-

ble (see also parameter <iFlags> of the function meIO-SingleConfig()):

1. Reading the period by bitwise OR-linking the flags: ME_IO_SIN-

GLE_TYPE_FIO_TICKS_TOTAL „or“ ME_IO_SIN-

GLE_TYPE_FI_LAST_VALUE „or“ ME_IO_SIN-

GLE_TYPE_NONBLOCKING.

2. Reading the duration of the first period by bitwise OR-linking the

flags: ME_IO_SINGLE_TYPE_FIO_TICKS_FIRST_PHASE „or“

ME_IO_SINGLE_TYPE_FI_LAST_VALUE „or“ ME_IO_SIN-

GLE_TYPE_NONBLOCKING.

• For easy conversion of ticks into seconds you can use the function meI-

OSingleTicksToTime(). You have to call the function separately for period

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 43 Meilhaus Electronic

and duration of the first phase of the period. Note that the option for

<iTimer> corresponds with <iFlags> in the function meIOSingle().

In parameter <iTicksLow> the ticks from <iValue> are passed (see

above). Finally parameter <pdTime> returns a pointer to the calculated

value in seconds.

Note: If you need the dimensions frequency and duty-cycle they can be

easily calculated by the return values of <pdTime>. It applies:

Frequency [Hz] = 1/period [s]

Duty-cycle [%] = („Duration of the first phase of the period“ [s]

/ period [s]) × 100

The parameter <iTicksHigh> is reserved for future enhancements.

Please pass 0 here.

3.4.1.4.2 Pulse Generator

Using the operation mode pulse generator (FO=“Frequency Output“) you

can output a rectangular signal with variable duty cycle by a resolution of

one tick. Each pulse generator channel (output) is accessed as subdevice

of type ME_TYPE_FO, sub-type ME_SUBTYPE_SINGLE. The functions

meQuery…(), meIOSingleConfig(), meIOSingle() und meIOSingleTime-

ToTicks() are relevant:

 Determine subdevice by the function meQuery…().

 Configuration of the subdevice by the function meIOSingleConfig():

 Pass the channel index in parameter <iChannel>

 Pass ME_SINGLE_CONFIG_FIO_OUTPUT in the parame-

ter <iSingleConfig>.

 In parameter <iTrigChan> pass either

ME_TRIG_CHAN_DEFAULT or ME_TRIG_CHAN_SYN-

CHRONOUS for a synchronous start of several pulse gener-

ators (see chap. 3.4.3.3 on page 74)

 The parameters <iRef>, <iTrigType> and

<iTrigEdge> are not required here. Please pass

ME_VALUE_NOT_USED.

 Pass ME_IO_SINGLE_CONFIG_NO_FLAGS in parameter

<iFlags>.

 For easy conversion of the signal to be output from seconds into ticks

the function meIOSingleTimeToTicks() is useful. You have to call the

function separately for period and duration of the first phase of the pe-

riod.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 44 Meilhaus Electronic

 In parameter <iTimer> first choose ME_TIMER_FIO_ TO-

TAL for the period and then ME_TIMER_FIO_FIRST_

PHASE for the first phase of the period. Pass the desired

appropriate value in seconds to the parameter <pdTime>.

 Each time <piTicksLow> returns a pointer with the ticks to

be passed in parameter <iValue> of the function meI-

OSingle() corresponding to <iFlags>.

 To pass the period and the duration of the first phase of the period you

must call the function meIOSingle() twice.

For standard operation we recommend the following procedure:

1. Pass the period by bitwise OR-linking the flags:

ME_IO_SINGLE_TYPE_FIO_TICKS_TOTAL „or“ ME_IO_SIN-

GLE_TYPE_FO_UPDATE_ONLY

2. Pass the duration of the first phase of the period by bitwise OR-link-

ing the flags:

ME_IO_SINGLE_TYPE_FIO_TICKS_FIRST_PHASE

„or“ ME_IO_SINGLE_TYPE_FO_START_SOFT.

 Pass ME_DIR_OUTPUT in parameter <iDir>.

Use ME_DIR_INPUT for readback operation.

 In parameter <iValue> the ticks from <piTicksLow> (see

above) are passed. Note that function meIOSingle() must be

called twice and that the value corresponds with <iFlags>.

 Starting the output operation can be controlled by appropriate

combination of the flags in parameter <iFlags>. It is done by

bitwise OR-linking

ME_IO_SINGLE_TYPE_FIO_TICKS_ TOTAL resp.

ME_IO_SINGLE_TYPE_FIO_TICKS_FIRST_ PHASE with one

or more of the following options:

 ME_IO_SINGLE_TYPE_FO_UPDATE_ONLY

The output value should be updated but not output at once. No

linking with other flags possible. Default: the new value is output

immediately.

 ME_IO_SINGLE_TYPE_FO_START_SOFT

The value is output not until the end of the current period (if al-

ready running). Can be bitwise OR-linked with ME_IO_SIN-

GLE_TYPE_FO_START_LOW. Default: the new value is output

immediately.

 ME_IO_SINGLE_TYPE_TRIG_SYNCHRONOUS

All subdevices, which have been added to the synchronous list

by parameter <iTrigChan> of the function meIOSingleCon-

fig() will be started simultanously (see also chap. 3.4.3.3 on

page 74). Default: subdevice starts independently.

 ME_IO_SINGLE_TYPE_FO_START_LOW

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 45 Meilhaus Electronic

By default the first phase of the rectangular signal is „high“. If

the flag is set, the output starts with „low“ level. Can be OR-

linked bitwise with

ME_IO_SINGLE_TYPE_FO_START_SOFT.

Diagram 14: Negated pulse output

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 46 Meilhaus Electronic

3.4.1.5 Counter Operation

Although the ME-iDS can support various types of counters, currently only

the standard counter chip of type 8254 is implemented which provides

three 16-bit counters.

Each counter is accessed as a subdevice of type ME_TYPE_CTR, sub-

type ME_SUBTYPE_CTR_8254. For counter subdevices the parameter

<iChannel> should be set 0. meQueryNumberChannels() always returns

1.

NOTE: There is no „STOP“ function for counters. Use meIOReset- Subde-

vice() instead. Trigger options are not available for counters.

Parameter <iRef> defines the clock source for the counters:

 Use external clock generator as clock source

(ME_REF_CTR_EXTERNAL)

 Use output of the previous counter as clock source

(ME_REF_CTR_PREVIOUS)

 Use the internal 1 MHz clock generator as clock source

(ME_REF_CTR_INTERNAL_1 MHZ)

 Use the internal 10 MHz clock generator as clock source

(ME_REF_CTR_INTERNAL_10 MHZ)

Parameter <iSingleConfig> represents the chosen counting mode.

The three counters of the chip can be configured indpen-dently of each

other for the following 6 operation modes (see also appendix A1 on page

177):

 Mode 0: Change state at zero

(ME_SINGLE_CONFIG_CTR_8254_MODE_0)

 Mode 1: Retriggerable „One Shot“ (ME_SINGLE_CON-

FIG_CTR_8254_MODE_1)

 Mode 2: Asymmetric divider

(ME_SINGLE_CONFIG_CTR_8254_MODE_2)

 Mode 3: Symmetric divider

(ME_SINGLE_CONFIG_CTR_8254_MODE_3)

 Mode 4: Counter start by software trigger

(ME_SINGLE_CONFIG_CTR_8254_MODE_4)

 Mode 5: Counter start by hardware trigger

(ME_SINGLE_CONFIG_CTR_8254_MODE_5)

Note: The real voltage level at the inputs/outputs of the counters depends

on the respective hardware. For example on opto-isolated versions of the

ME-4600 series a high level at the output corresponds to the „high imped-

ance“ state and a low level to the state „driving“. Please consult the corre-

sponding hardware manual. The logic levels in the following description

apply for the counter chip without further circuitry.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 47 Meilhaus Electronic

The following diagram should explain the program flow briefly:

Diagram 15: Programming the counter

3.4.1.5.1 Mode 0: Change State at Zero

This mode of operation can be used e.g. to trigger an interrupt when the

counter meets zero. The counter output (OUT_0…2) is set to low when the

counter is initialised or when a new start value is loaded. To enable count-

ing, a high level must be applied to the GATE input. As soon as the start

value is loaded and the counter is enabled, the counter begins counting

downwards and the output remains low.

Upon zero axis crossing, the output is set to high and remains there until

the counter is reloaded or initialised again. The counter continues to count

down, even after zero is meet. If a counter register is loaded during a

count in progress the following occurs:

1. when the first byte is written, the count process is stopped.

2. when the second byte is written, the count process begins again.

3.4.1.5.2 Mode 1: Retriggerable „One-Shot“

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. When a start value is loaded the output becomes low on the next

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 48 Meilhaus Electronic

clock following to the first trigger pulse at the GATE input (positive edge).

Upon zero axis crossing, the counter output is set to high again.

On a positive edge at the GATE input, the counter can be reset (retrig-

gered) to the start value. The output remains low until the counter meets

zero.

The counter value can be read at any time without effecting the count pro-

cess.

3.4.1.5.3 Mode 2: Asymmetric Divider

In this mode, the counter is used as a frequency divider. The counter out-

put (OUT_0…2) is set to high after initialisation. When the counter is ena-

bled by applying a high level to the GATE input, the counter is counting

downwards and the output remains high. When the count meets the value

0001Hex, the output becomes low for one clock cycle. This process will be

repeated periodically as long as the GATE input is enabled (high level),

else the output is set to high immediately.

If the counter register is reloaded between two output pulses, the current

counter state is not affected. However the new value is used on the next

period.

3.4.1.5.4 Mode 3: Symmetric Divider

This mode of operation is similar to mode 2 with the difference that the di-

vided frequency is symmetric (only for even count values). The counter

output (OUT_0…2) is set to high after initialisation. When the GATE input

is enabled (high level), the counter is counting downwards in steps of 2.

The output will toggle its state on a half of the start value number of peri-

ods referenced to the input clock (starting with high level). This process

will be repeated periodically as long as the GATE input is enabled (high

level), else the output is set to high immediately.

If the counter is reloaded between two output pulses, the current counter

state is not affected. The new value is used on the next period.

3.4.1.5.5 Mode 4: Counter Start by Software Trigger

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. To enable the counter the GATE input must be enabled (high level).

When the counter is loaded (software trigger) and enabled, the counter

starts counting downwards, while the output remains high.

Upon zero axis crossing the output becomes low for one clock cycle. After-

wards the output becomes high again and remains there until the counter

is initialised and a new start value is loaded.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 49 Meilhaus Electronic

If the counter is reloaded during a count process, the new start value is

used in the next cycle.

3.4.1.5.6 Mode 5: Counter Start by Hardware Trigger

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. After loading a start value to the counter, counting starts on the next

clock following to the first trigger pulse at the GATE input (positive edge).

Upon zero axis crossing, the output becomes low for one clock cycle. Af-

terwards the output becomes high again and remains there until the next

trigger pulse occurs.

If the counter register is reloaded between two trigger pulses, the new start

value is used after the next trigger pulse.

The counter can be reset to the start value (re-triggered) at any time by

applying a positive edge to the GATE input. The output remains high until

zero axis crossing is meet.

3.4.1.5.7 Mode „Pulse Width Modulation“

A special application for the counters of type 8254 is the output of a rec-

tangular signal with a variable duty cycle („PWM“ mode). With that you can

output a rectangular signal of maximum 50 kHz with a variable duty cycle

to OUT_2.

Diagram 16: PWM signal

Condition is a correct switching of inputs and outputs (CLK, GATE, OUT)

by the external circuitry. Please read the corresponding chapter regarding

the PWM switching - especially of opto-isolated counters - in your hard-

ware manual.

Basically the following switching applies:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 50 Meilhaus Electronic

Diagram 17: Switching pulse width modulation

Counter 0 is used as a prescaler for the externally driven base clock. Us-

ing the parameter <iPrescaler> you can set the frequency fOUT_2 as fol-

lows:

By the parameter <iDutyCycle> you can set the duty cycle between

1…99 % in steps of 1 % (see diagram 16 on page 49). The operation is

started immediately after calling the function meUtiltiyPWMStart() and

stopped by the function meUtiltiyPWMStop(). No further programming of

the counters is required.

On opto-isolated devices the output OUT_2 is an open collector output as

a rule. I.e. logical „1“ means output is driving and logical „0“ that the output

is in a high impedance state (see hardware manual).

fOUT_2 =

Base clock
(with <iPrescaler> = 2…(216– 1))

 <iPrescaler> ⋅ 100

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 51 Meilhaus Electronic

3.4.2 Streaming Operation

The term „streaming“ covers all those operations in which data are trans-

fered via FIFO. The timing is controlled by a timer and/or external trigger

signals. The subdevice must be of sub-type ME_SUBTYPE_ STREAM-

ING. This can be checked using the function meQuerySubdeviceType()

(parameter <piSubtype>).

If supported by the hardware this applies not only analog input/output but

also to digital/output operation. Please refer to appendix A3 on page 182

for a detailed description of the bit-pattern output of the ME-4680.

Proceed as follows:

1. Query the capabilities with the meQuery… functions resp. deter-

mine the properties with the meProperty… functions.

2. Configure the subdevice with the function meIOStreamConfig() and

meIOSetChannelOffset() if you are using a subdevice with an ad-

justable offset.

3. For an output operation the buffer must be preloaded with the func-

tion meIOStreamWrite(). Pass the option ME_WRITE_

MODE_PRELOAD in parameter <iWriteMode>.

4. Start streaming with function meIOStreamStart().

5. Read or write data (meIOStreamRead() resp. meIOStreamWrite()).

6. Stop streaming with the function meIOStreamStop() or meIORe-

set…().

Note: Streaming is not possible for subdevices of type counter

(ME_TYPE_CTR), frequency input/output (ME_TYPE_FIO

/ME_TYPE_FI/ME_TYPE_FO) and interrupt (ME_TYPE_IRQ).

3.4.2.1 Querying Hardware Properties

For querying the hardware resources you can use either the query func-

tions (meQuery…) or the property functions (meProperty…). Using the

query functions you can query a device for availability of certain subde-

vices or capabilities (caps) (e.g. „Provides the device a subdevice of type

analog input?“). Another way follow the property functions. Similar to a tree

structure you can query and set (if applicable) properties and attributes by

their property path

3.4.2.2 Configuring Hardware

In order to configure a subdevice for streaming mode two data structures

have to be prepared always:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 52 Meilhaus Electronic

1. The channel-list defines which digital ports resp. analog channels

- and further channel specific parameters if applicable - have to be

set. See also page 58.

2. The trigger structure defines the conditions how to start a stream-

ing operation and how values should be read or written. See page

58. Choose one of these timing modes:

 Stream-Timer (see page 56).

 Stream-Trigger-Sample (see page 59).

 Stream-Trigger-List (see page 60).

3.4.2.3 Channel List

The channel list (meIOStreamConfig_t) defines which digital port resp.

analog channels - and further channel specific parameters if applicable -

have to be set. Even if no channel specific parameter can be set a channel

list with a standard entry must be written. Allocate a buffer of defined size

to which the channel list entries are written. The maximum number of

channel list entries depends on hardware (e.g. max.1024 entries for the

ME-4600 series). This can be queried by the meQuery… functions.

Typical settings in the channel list:

 Channel index for analog channels resp. subdevice index for digital

inputs/outputs.

 Measurement range for analog channels.

 Ground reference: e.g. single-ended or differential.

3.4.2.4 Trigger Structure

The trigger structure (meIOStreamTrigger_t) defines conditions for

start and stop of a streaming operation.

For example you can define the trigger type (software or external analog

or digital trigger) and trigger edge. Depending on the device different trig-

ger conditions are possible.

There are 3 hierarchical trigger levels and several trigger conditions. The

concept should be explained in the following:

Level 1: Concerns the operation as a whole (iAcq…)

Level 2: Processing a list e.g. the channel list for analog acquisition (iS-

can…)

Level 3: The conversion of a single value (iConv…)

Start of the whole operation (<iAcqStart…>)

 Start of a list processing (scan)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 53 Meilhaus Electronic

<iScanStart>

 Start of a single sample/conver-

sion <iConvStart…>

 Stop of a list processing (scan)
<iScanStop…>

Stop of the whole operation (<iAcqStop…)

Table 10: Trigger structure

Tip: Initialize the trigger structure with 0. In that way you must only take

care of the parameters which are required. At the same time unused pa-

rameters are automatically passed correctly.

a. Trigger Type <iAcqStartTrigType>

This parameter defines the trigger type for start of the whole operation.

Depending on the used hardware you can choose between the options

software start and external analog or digital trigger (see also function de-

scription on page 79).

b. Trigger Edge <iAcqStartTrigEdge>

This parameter defines the trigger edge for start of a single conversion.

Depending on the trigger type and the used hardware you can choose be-

tween different options for the trigger edge (rising, falling, etc.). See also

function description on page 79.

c. Trigger Channel <iAcqStartTrigChan>

With this parameter you can choose whether triggering should be done

separatly for each channel (standard) or if a channel should be started

synchronologically with other channels. E.g. for analog acquisition with

sample & hold option or synchronous start of several analog output chan-

nels. See also function description on page 79.

d. Offset Time <iAcqStartTicksLow>, <iAcqStartTicksHigh>

Number of ticks between start of the operation and the first conversion.

Note that the settling time of the AI-section may not be fallen below. For

standard applications we recommend to set the offset time to the minimum

chan interval of the appropriate hardware (AcqStartTicks = min. Con-

vStartTicks). See also function description on page 79.

By combining „AcqStartTicksLow“ and „AcqStartTicksHigh“ values up to

64-bit width are possible, if supported by the hardware. It applies: Ac-

qStartTicks = (AcqStartTicksHigh <<32) ∨ AcqStartTicksLow.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 54 Meilhaus Electronic

e. AcqStartArgs <iAcqStartArgs>

This parameter is used for extended trigger options of MEphisto-Scope

like window trigger or trigger on slope. See also function description on

page 79.

f. Trigger Type <iScanStartTrigType>

This parameter defines the trigger type for start of a scan. Depending on

the used hardware you can choose between numerous options like exter-

nal analog or digital trigger, timer-controlled, … See also function descrip-

tion on page 79.

g. Scan Interval

<iScanStartTicksLow>, <iScanStartTicksHigh>

This parameter determines the time interval between the start of two con-

secutive scans (= channel list processing). Usage is optional. See also

function description on page 79.

By combining „ScanStartTicksLow“ and „ScanStartTicksHigh“ values up to

64-bit width are possible, if supported by the hardware. It applies:

ScanStartTicks = (ScanStartTicksHigh <<32) ∨ ScanStartTicksLow.

Note the following relation when calculating the scan interval (see also

timing diagrams from page 57):

ScanStartTicks = (number of channel list entries x ConvStartTicks) +

„pause“ [Ticks].

h. ScanStartArgs <iScanStartArgs>

This parameter is reserved for future extensions.

i. Trigger Type <iConvStartTrigType>

This parameter defines the trigger type for start of a single conversion. De-

pending on the used hardware you can choose between the options exter-

nal analog or digital trigger, timer-controlled,… See also function descrip-

tion on page 78.

j. Chan Interval

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 55 Meilhaus Electronic

<iConvStartTicksLow>, <iConvStartTicksHigh>

This parameter determines the chan interval in number of ticks between

two conversions (sample resp. output rate). See also function description

on page 163.

By combining „ConvStartTicksLow“ and „ConvStartTicksHigh“ values up to

64-bit width are possible, if supported by the hardware. It applies:

ConvStartTicks = (ConvStartTicksHigh <<32) ∨ ConvStartTicksLow.

k. ConvStartArgs <iConvStartArgs>

This parameter is reserved for future extensions.

l. Trigger Type <iScanStopTrigType>

This parameter defines the trigger type for ending the scan. Depending on

the used hardware you can end the scan operation e.g. after the total

number of conversions defined in <iScanStopCount>. See also function

description on page 78).

m. Number of Conversions <iScanStopCount>

This parameter determines the total number of conversions after which the

scan operation should be ended and at the same the operation as a

whole. If you want to run the operation for an infinite time please pass 0

here. See also function description on page 78.

n. ScanStopArgs <iScanStopArgs>

This parameter is used for extended trigger options of MEphisto-Scope.

See also function description on page 184.

o. Trigger Type <iAcqStopTrigType>

On demand, this parameter defines the trigger type for ending the whole

operation. The following options are available (see also function descrip-

tion on page 78):

 The operation will be ended as soon as the number of scans

(channel list processing), defined in <iAcqStopCount> has

been meet.

 The operation will be ended as soon as the number of conver-

sions, defined in <iScanStopCount> has been meet.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 56 Meilhaus Electronic

p. Number of Scans <iAcqStopCount>

This parameter defines the number of scans (channel list processing) after

which the whole operation will be ended.

If you want to run the operation for an infinite time please pass 0 here. See

also function description on page 78.

q. AcqStopArgs <iAcqStopArgs>

This parameter is reserved for future extensions.

Notes:

In the following diagrams (page 63 to 67) is only the rising trigger edge ac-

tive for external trigger signals.

See also chapter „Synchronous Start“ on page 74.

The parameters <iAcqStartTrigType>, <iScanStartTrigType>

and <iConvStartTrigType> define all start conditions possible.

For passing the concrete values for the appropriate subdevice please refer

to the ME-iDS help file.

Choose one of the operation modes and note the diagrams on the follow-

ing pages:

 Stream-Timer (see page 56)

 Stream-Trigger-Sample (see page 59)

 Stream-Trigger-List (see page 60)

3.4.2.4.1 Timing Stream-Timer

Timer-controlled streaming operation (with/without scan-timer). Start by

software or external trigger pulse after calling the function meIOStream-

Start() - all further trigger pulses will be ignored.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 57 Meilhaus Electronic

Diagram 18: Timing diagram Stream-Timer

* Note that the offset time tOff must consider the settling time of the

hardware! For standard applications we recommend to equate the offset

time with the minimum chan time of the hardware (<iAcqStartTicks> =

min. <iConvStartTicks>).

** Index of the samples in data FIFO. The values are always sampled

corresponding to the order of the channels in the channel list. Independent

whether channel specific parameters can be set on the hardware or not, a

channel list with a standard entry must be written. See function meI-

OStreamConfig().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 58 Meilhaus Electronic

Parameter Software trigger External trigger

…without Scan pause

<iAcqStart-

TrigType>

ME_TRIG_TYPE_SW ME_TRIG_TYPE_EXT_xx

<iAcqStart-

TrigEdge>

ME_TRIG_EDGE_NONE Edge required

<iScanStart-

TrigType>

ME_TRIG_TYPE_FOLLOW ME_TRIG_TYPE_FOL-
LOW

<iScanStart-

Ticks>

0 0

<iConvStart-

TrigType>

ME_TRIG_TYPE_TIMER ME_TRIG_TYPE_TIMER

…with Scan Pause

<iAcqStart-

TrigType>*

ME_TRIG_TYPE_SW ME_TRIG_TYPE_EXT_xx

<iAcqStart-

TrigEdge>

ME_TRIG_EDGE_NONE Edge required

<iScanStart-

TrigType>

ME_TRIG_TYPE_TIMER ME_TRIG_TYPE_TIMER

<iScanStart-

Ticks>

Time for channel list processing + pause

<iConvStart-

TrigType>

ME_TRIG_TYPE_TIMER ME_TRIG_TYPE_TIMER

Table 11: Timing Stream-Timer

Details for Stream-Timer: For reliable acquisition of an external trigger

pulse, make sure that the high phase of the external trigger pulse tPH is

minimum 1 tick (depends on hardware). See also specifications of your de-

vice.

Depending on the device further trigger conditions to start this operation

are possible. See also parameter <iAcqStartTrigType> of the function

meIOStreamConfig().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 59 Meilhaus Electronic

3.4.2.4.2 Timing Stream-Trigger-Sample

Event-controlled streaming operation. Start by software or external trigger

pulse after calling the function meIOStreamStart() - on each trigger pulse

one value is sampled.

Diagram 19: Timing diagram Stream-Trigger-Sample

* Note that the offset time tOff must consider the settling time of the hard-

ware! For standard applications we recommend to equate the offset time

with the minimum chan time of the hardware (<iAcqStartTicks> = min.

<iConvStartTicks>).

**Index of the samples in data FIFO. The values are always sampled cor-

responding to the order of the channels in the channel list. Independent

whether channel specific parameters can be set on the hardware or not, a

channel list with a standard entry must be written. See function meI-

OStreamConfig().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 60 Meilhaus Electronic

Parameter Software trigger External trigger

<iAcqStart-

TrigType>

ME_TRIG_TYPE_SW ME_TRIG_TYPE_EXT_xx

<iAcqStart-

TrigEdge>

ME_TRIG_EDGE_NONE Flanke erforderlich

<iScanStart-

TrigType>

ME_TRIG_TYPE_SW <iAcqStartTrigType>

<iScanStart-

TrigEdge>

ME_TRIG_EDGE_NONE <iAcqStartTrigEdge>

<iConvStart-

TrigType>

ME_TRIG_TYPE_SW <iAcqStartTrigType>

<iConvStart-

TrigEdge>

ME_TRIG_EDGE_NONE <iAcqStartTrigEdge>

Table 12: Timing Stream-Trigger-Sample

Details for Stream-Trigger-Sample: For reliable acquisition of an exter-

nal trigger pulse, make sure that the high phase of the external trigger

pulse tPH is minimum 1 tick (depends on hardware). See also specifica-

tions of your device.

Depending on the device further trigger conditions to start this operation

are possible. See also parameter <iAcqStartTrigType> of the function

meIOStreamConfig().

In this operation mode an adjustable chan time of some devices is not

supported. Please refer to the ME-iDS help file and the hardware manual.

3.4.2.4.3 Timing Stream-Trigger-List

Event-controlled streaming operation. Start by software or external trigger

pulse after calling the function meIOStreamStart() - on each trigger pulse

the channel list is sampled once.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 61 Meilhaus Electronic

Diagram 20: Timing diagram Stream-Trigger-List

* Note that the offset time tOff must consider the settling time of the

hardware! For standard applications we recommend to equate the offset

time with the minimum chan time of the hardware (<iAcqStartTicks> =

min.<iConvStartTicks>).

** Index of the samples in data FIFO. The values are always sampled

corresponding to the order of the channels in the channel list. Independent

whether channel specific parameters can be set on the hardware or not, a

channel list with a standard entry must be written. See function meI-

OStreamConfig().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 62 Meilhaus Electronic

Parameter Software trigger External Trigger

<iAcqStart-

TrigType>

ME_TRIG_TYPE_SW ME_TRIG_TYPE_EXT_x
x

<iAcqStart-

TrigEdge>

ME_TRIG_EDGE_NON
E

Flanke erforderlich

<iScanStart-

TrigType>

ME_TRIG_TYPE_SW ME_TRIG_TYPE_EXT_x
x

<iScanStart-

TrigEdge>

ME_TRIG_EDGE_NON
E

<iAcqStartTrigEdge>

<iConvStart-

TrigType>

ME_TRIG_TYPE_TIME
R

ME_TRIG_TYPE_TIME
R

<iConvStart-

TrigEdge>

ME_TRIG_EDGE_NON
E

ME_TRIG_EDGE_NON
E

Table 13: Timing Stream-Trigger-List

Details for Stream-Trigger-List: For reliable acquisition of an external

trigger pulse, make sure that the high phase of the external trigger pulse

tPH is minimum 1 tick (depends on hardware). See also specifications of

your device.

Depending on the device further trigger conditions to start this operation

are possible. See also parameter <iAcqStartTrigType> of the function

meIOStreamConfig().

In this operation mode the pause between consecutive channel list pro-

cessing of some devices is not supported. Please refer to the ME-iDS help

file and the hardware manual.

3.4.2.5 Reading Data

Reading the data by repeatedly calling the function meIOStreamRead()

(see page 63). The following diagram applies for analog acquisition. Avail-

ability of shown blocks depends on hardware.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 63 Meilhaus Electronic

Diagram 21: Reading data

3.4.2.5.1 Procedure Reading Data

Retrieve the data by repeatedly calling the function meIOStreamRead()

(see page 63).

The diagrams on the next pages explain the program flow under the fol-

lowing conditions:

a. Retrieval of data without callback function (BLOCKING or NONBLOCK-

ING). See diagram 23 on page 71.

b. Retrieval of data with an user-defined callback function in the back-

ground. On demand you can install three different callback functions by

the function meIOStreamSetCallbacks(). They can be called at the be-

ginning, during or after the acquisition.See diagram 24 on page 66.

Also note the programming examples within the ME-iDS SDK.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 64 Meilhaus Electronic

Diagram 22: Procedure programming reading data

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 65 Meilhaus Electronic

3.4.2.5.2 Reading without Callback Function

Reading data by repeatedly calling the function meIOStreamRead()

(<iReadMode>: BLOCKING or NON_BLOCKING):

Diagram 23: Reading data without callback function

3.4.2.5.3 Reading with Callback Function

Reading data with a user-defined callback function.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 66 Meilhaus Electronic

Diagram 24: Reading data with callback function

Returning a value different from 0 by the callback function will stop the

streaming operation. You can return the error code of the callback function

from parameter <iErrorCode>.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 67 Meilhaus Electronic

3.4.2.6 Writing Data

Writing data by repeatedly calling the function meIOStreamWrite() (see

page 180). The following diagram applies for analog output. Availability of

shown blocks depends on hardware.

Diagram 25: Writing data

Basically, data are continuously written to a subdevices of subtype

ME_SUBTYPE_STREAMING. The application is responsible for reloading

the buffer with new values by the function meIOStreamWrite(). This offers

you the possibility, to change the output values permanently during the op-

eration.

A data buffer of a defined size must be allocated for the values to be out-

put. Before starting the output operation, the first data package must be

written to the data buffer by the function meIOStreamWrite() using the op-

tion ME_IO_WRITE_MODE_PRELOAD in the parameter<iWriteMode>.

The chan-timer defines a fixed time grid for output of the values. It must be

configured with the function meIOStreamConfig() before running the out-

put.

For the wraparound option see chap. 3.4.2.6.4 on page 72).

Note: Regarding the specifics of the timer-controlled bit-pattern output of

the ME-4680 please note the detailed description in appendix A3 on page

182.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 68 Meilhaus Electronic

3.4.2.6.1 Procedure Writing Data

The diagrams on the following pages show the program flow for the follow-

ing conditions:

a. The output is done without callback function in mode „NONBLOCK-

ING“ only the number of values are reloaded which have enough

space in the data buffer. In „BLOCKING“ mode the function waits

until all values specified in parameter <piCount> could be re-

loaded. See diagram 27 on page 70.

b. The output is done as a background operation using a user-defined

callback function. On demand you can install three different

callback functions by the function meIOStreamSetCallbacks(). They

can be called when starting a read or write operation, when data

are available resp. required and when terminating the operation.

See diagram 28 on page 71.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 69 Meilhaus Electronic

Diagram 26: Procedure programming writing data

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 70 Meilhaus Electronic

3.4.2.6.2 Writing without Callback Function

Writing data by repeatedly calling the function meIOStreamWrite()

(<iWriteMode>: BLOCKING or NON_BLOCKING):

Diagram 27: Writing data without callback function

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 71 Meilhaus Electronic

3.4.2.6.3 Writing with Callback Function

Writing data with a user-defined callback function:

Diagram 28: Writing data with callback function

Returning a value different from 0 by the callback function will stop the

streaming operation. You can return the error code of the callback function

from parameter <iErrorCode>.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 72 Meilhaus Electronic

3.4.2.6.4 Wraparound Option

By the „wraparound“ option the values are written into the data buffer once

and output periodically. There is no possibility to update the buffer after

the operation has been started by meIOStreamStart().

Depending on various hardware specific parameters (e.g. FIFO size, sam-

pling rate) the operation is running on firmware level without extra load for

the host computer.

Before starting the output, the first data package must be written to the

data buffer. Use the option ME_IO_WRITE_MODE_PRELOAD in the pa-

rameter <iWriteMode> of function meIOStreamWrite().

3.4.2.7 Stop Streaming Operation

Operation ends if one of the following conditions is true:

1. Cancelled by user with meIOStreamStop() or meIOReset...()

2. Finished: number of values have been transfered

3. Function meIOStreamConfig(): The trigger structure meIOStreamTrig-

ger_t contains several parameters to stop a streaming operation:

a. Manual stop (in case of infinite operation)

 <iScanStopTrigType> = ME_TRIG_TYPE_NONE

 <iScanStopCount> = 0

 <iAcqStopTrigType> = ME_TRIG_TYPE_NONE

 <iAcqStopCount> = 0

b. Stop after a defined number of conversions

 <iScanStopTrigType> = ME_TRIG_TYPE_ COUNT

 <iAcqStopTrigType> = ME_TRIG_TYPE_ FOLLOW

 <iAcqStopCount> = 0

c. Stop after defined number of channel-list processing

 <iScanStopTrigType> = ME_TRIG_TYPE_NONE

 <iScanStopCount> = 0

 <iAcqStopTrigType> = ME_TRIG_TYPE_COUNT

4. Error occured: not enough space in buffer or no values in buffer.

3.4.3 Extra Features

3.4.3.1 Sample and Hold

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 73 Meilhaus Electronic

The “Sample & Hold”-option is used when multiple channels need to be

measured at the same time with multiplexed subdevices. The „sample &

hold“-channels are „frozen“ simultaneously by the hardware, using a com-

mon triggering signal (software or external trigger). Next the values can be

read sequentially.

Diagram 29: Sample & Hold

NOTE: “S&H”-operation needs a certain recovery time, therefore execut-

ing the channel-list directly after the previous one is not possible. It is only

available for analog input channels.

If the „S&H“-option is supported by the hardware the function meQuery-

SubdeviceCaps() returns ME_CAPS_AI_SAMPLE_HOLD.

For more details and limitations check the ME-iDS help file and the appro-

priate hardware manual.

3.4.3.2 Bit-Pattern Output of ME-4680

A special function is the redirection of a D/A-FIFO from a D/A converter

(DAC) to digital ports, as required for the “timer-controlled bit-pattern out-

put” of the ME-4680.

Some of the data FIFOs for analog output can be redirected to other sub-

devices (with digital output ports) and output a digital data stream.

The programming is done in two steps:

• Disconnecting the DAC: This is programmed in an analog output sub-

device of sub-type ME_SUBTYPE_STREAMING. The DAC will be discon-

nected if the constant ME_IO_STREAM_CONFIG_

BIT_PATTERN will be used in parameter <iFlags> of the function meI-

OStreamConfig().

NOTE: After disconnecting the DAC from FIFO the analog output value is

preserved.

 Redirecting the FIFO output: This is programmed in a digital port sub-

device of type ME_TYPE_DIO or ME_TYPE_DO. Assumed the analog

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 74 Meilhaus Electronic

output FIFO is 16 bits wide the data word can be treated as separate

low byte and high byte. The values can be assigned to the digital ports

via the parameter <iRef> (ME_REF_FIFO_LOW for bit 7…0 and

ME_REF_FIFO_HIGH for bit 15…8 in the function meIOSingleConfig().

In parameter <iSingleConfig> ME_SINGLE_CONFIG_DIO_BIT_

PATTERN must be passed.

See also diagram 33 in appendix A3 on page 182.

NOTES:

 Ports used for „bit-pattern output“ have to be configured as output.

 There is the possibility to assign the same data source to several digital

ports.

 After programming a redirection normal access to these digital port

(read/write via meIOSingle()) is not possible any more.

 Programming a redirection has instant effect.

 If only redirection is programmed (without disconnecting the DAC) the

analog output port works normally with corresponding value to those on

the digital outputs.

3.4.3.3 Synchronous Start

Some of the Meilhaus boards (example: ME-6000) offer the possibility to

synchronize the operation of different subdevices. Therefore a so-called

„sync-list“ must be generated.

Notes:

 There can be more than one sync-list for a single device.

 One sync-list can contain subdevices of different types.

See ME-iDS help file and hardware manual for details.

By default every subdevice is running completely independent. In that

case pass the constant ME_TRIG_CHAN_DEFAULT. In order to add a

subdevice to the sync-list this parameters have to be set to

ME_TRIG_CHAN_SYNCHRONOUS.

… for single operation:

 in parameter <iTrigChan> of function meIOSingleConfig().

Example: Starting the pulse output of several subdevices synchro-

nously:

- Configure each subdevice in the function meIOSingleCon-

fig() with the flag ME_TRIG_CHAN_SYNCHRONOUS.

- For each subdevice write the value for FIO_TICKS_TO-

TAL und FIO_TICKS_FIRST_ PHASE without „sync“ flag

set with exeption of the last one which must be passed

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 75 Meilhaus Electronic

with the flag ME_IO_SINGLE_TYPE_TRIG_ SYNCHRO-

NOUS. The last write command with the flag set starts the

output on all subdevices, which have been configured with

ME_TRIG_CHAN_ SYNCHRONOUS immediately.

… for streaming operation:

in parameter <iAcqStartTrigChan> in the trigger structure of func-

tion meIOStreamConfig().

Choose one of the following trigger sources for the sync-list:

 External trigger: Active external trigger on any of the subdevices in-

cluded in the sync-list.

Software trigger: meIOSingle() or meIOStreamStart() with the flag

_TRIG_SYNCHRONOUS set is called software trigger. Sub-devices

that generate a software trigger have not to be included in the sync-list.

 Function meIOSingle(), parameter <iFlags>:

ME_IO_SINGLE_TYPE_TRIG_SYNCHRONOUS

 Function meIOStreamStart() start entry pStar-

tList[x].iFlags:

ME_IO_STREAM_START_TYPE_TRIG_SYNCHRO-

NOUS

IMPORTANT: An external trigger can start a sync-list only if the sub-de-

vice is included. Software trigger starts the list even if the subdevice in not

part of the sync-list.

3.4.3.4 Offset Setting

If an input channel (e.g. on MEphisto-Scope) provides the feature of ad-

justing the measurement range by an offset, you have to call the function

meIOSetChannelOffset() prior of starting the operation. Please note that

this feature is only possible with streaming operation. After a reset with the

function meIOResetSubdevice() the offset for both channels and for all

ranges is set to 0.

See also the description of the function meIOSetChannelOffset() in the

chapter function reference from page 78.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 76 Meilhaus Electronic

3.4.4 Interrupt Operation

For subdevices of type „external interrupt“ (ME_TYPE_EXT_IRQ) no sin-

gle operations are possible. On demand you can enable the interrupt oper-

ation with the function meIOIrqStart(). Depending on the hardware you can

choose between different interrupt sources via parameter <iIrqSource>:

 ME_IRQ_SOURCE_DIO_LINE

Interrupt source is a dedicated external interrupt input.

 ME_IRQ_SOURCE_DIO_PATTERN

Operation mode „Bit-Pattern Match“ (e.g.: ME-5810/8100/8200): On

bit-pattern match an interrupt is triggered.

 ME_IRQ_SOURCE_DIO_MASK

Operation mode „Bit-Pattern Change“ (e.g.: ME-5100/5810,

 ME-8100/8200): On change of at least one bit, masked as „sensitive“

an interrupt is triggered.

 ME_IRQ_SOURCE_DIO_OVER_TEMP

On overheating of a driver chip an interrupt is triggered (e.g.: ME-

5810/8200).

 ME_IRQ_SOURCE_DIO_NORMAL_TEMP

An interrupt is triggered as soon as an overheated driver chip is cooling

down to normal temperature.

 ME_IRQ_SOURCE_DIO_CHANGE_TEMP

An interrupt is triggered on overheating as well as on cooling down to

normal temperature.

Use the function meIOIrqWait() to analyze the different interrupt sources

(depending on hardware) individually. Disable the interrupt operation with

the function meIOIrqStop().

See also the description of the meIOIrq… functions in the chapter function

reference from page 78.

On demand, a user-defined callback function can be called. Returning a

value different from 0 by the callback function the interrupt operation will

be stopped.

See also the diagram 30:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

3 Programming page 77 Meilhaus Electronic

Diagram 30: Interrupt operation without (left) and with callback function (right)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 78 Meilhaus Electronic

4 Function Reference

4.1 General Notes

 Function prototypes:

In the following description of the functions the generic function

prototypes for ANSI C are used. Please refer to the definition resp.

header files for the other supported programming languages. The dif-

ferent syntax for pointers like „int* piName“ and „int *piName“

is equivalent.

 Execution mode BLOCKING:

Note, when using long sample rates or an external trigger which

appears later or not it can result in a longer lasting blocking of the task.

 Callback functions:

With Agilent VEE, LabVIEW, older Visual Basic dialects and

Python no callback functions can be used.

Returning a value different from 0 by a callback function a running op-

eration can be stopped.

 External trigger with time-out:

For functions with external trigger you can define a time-out period

within the first trigger pulse must occur. Else the operation will be can-

celled (parameter <iTimeOut>). It is not checked if further trigger sig-

nals fail to appear e.g. during an acquisition in the operation mode

streaming. Note this when programming.

 Usage of flags:

If useful, the constants in the parameters <iFlags> can be logically

OR-linked.

 Indexes:

Indexes of the parameters <iDevice>, <iSubdevice>,

<iChannel> and <iRange> start always with 0.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 79 Meilhaus Electronic

4.2 Description of the API Functions

The functions sorted by togetherness:

4.2.1 Query Functions from page 82 up

4.2.2 Property Functions from page 99 up

4.2.3 Input/Output Functions from page 107 up

4.2.4 Auxiliary Functions from page 158 up

Function Short Description Page

Query Functions

meQueryInfoDevice Querying information like device-ID,
serial number, bus type…

82

meQueryNameDeviceDriver Querying the driver name 84

meQueryNameDevice Querying the type of the device 82

meQueryDescriptionDevice Querying a string describing the de-
vice

86

meQueryVersionLibrary Querying the version of the function li-
brary

86

meQueryVersionMainDriver Querying the version of the main
driver

87

meQueryVersionDeviceDriver Querying the version of the device
driver

87

meQueryNumberDevices Querying the number of devices rec-
ognized by the ME-iDS

88

meQueryNumberSubdevices Querying the number of subdevices
of a device

88

meQuerySubdeviceType Querying the type of a subdevice 88

meQueryNumberChannels Querying the number of channels of a
subdevice

89

meQueryNumberRanges Querying the number of measure-
ment ranges of an analog subdevice

90

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 80 Meilhaus Electronic

meQueryRangeInfo Querying the limits of the ranges of
an analog measurement range

91

meQuerySubdeviceCaps Querying special capabilities of a sub-
device

92

meQuerySubdeviceCapsArgs Querying details of the special capa-
bilities of a subdevice

95

meQuerySubdeviceByType Querying the index of a subdevice of
the type wanted

96

meQueryRangeByMinMax Querying the proper analog measure-
ment range by passing the limits of
the range

98

Function Short description Page

Property Functions

mePropertyGetInt(A/W) Determine properties of type integer 100

mePropertyGetDouble(A/W) Determine properties of type double 101

mePropertyGetString(A/W) Determine properties of type string 103

mePropertySetInt(A/W) Set properties of type integer 103

mePropertySetDouble(A/W) Set properties of type double 104

mePropertySetString(A/W) Set properties of type string 105

Input/Output Functions

meIOResetDevice The whole device is reset 107

meIOResetSubdevice The subdevice is reset 111

meIOIrqStart Enabling interrupt operation 107

meIOIrqStop Disabling interrupt operation 110

meIOIrqWait Waiting for interrupt event 111

meIOIrqSetCallback Callback function installing an IRQ 112

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 81 Meilhaus Electronic

meIOSetChannelOffset

Adjusting the offset for analog inputs
(available only with streaming opera-
tion at the moment)

116

meIOSingleConfig
Configuring a channel for input/output
of a single value

118

meIOSingle Input/output of a single value 118

meIOSingleTicksToTime Converting ticks into time [s] 126

meIOSingleTimeToTicks Converting time [s] into ticks 124

meIOStreamConfig
Preparing a continuously running in-
put/output operation

130

meIOStreamTimeToTicks Converting period [s] into ticks 141

meIOStreamFrequencyToTicks Converting frequency [Hz] into ticks 143

meIOStreamStart Starting streaming operation 145

meIOStreamStop Stopping streaming operation 147

meIOStreamRead Timer-controlled acquisition 150

meIOStreamWrite Timer-controlled output 151

meIOStreamStatus Request on state during streaming 154

meIOStreamNewValues
Checking the status of streaming op-
eration

155

meIOStreamSetCallbacks Installing callback functions 156

Function Short description Page

Auxiliary Functions

meOpen Initializing the ME-iDS 158

meClose Closing the ME-iDS 159

meLockDriver Locking the driver 160

meLockDevice Locking a device 160

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 82 Meilhaus Electronic

meLockSubdevice Locking a subdevice 161

meErrorGetLast Function returns the last error code 162

meErrorGetLastMessage Assign error string to the last error 162

meErrorGetMessage Assign error string to a error number 163

meErrorSetDefaultProc Install predefined global error routine 164

meErrorSetUserProc Install user-defined global error rou-
tine

164

meUtilityDigitalToPhysical Converting a standardized digital
value into a physical value

165

meUtilityDigitalToPhysicalV …see meUtilityDigitalToPhysical,
however to be used for an array

165

meUtilityPhysicalToDigital Converting a physical value into a
standardized digital value

170

meUtiltiyPhysicalToDigitalV …see meUtiltiyPhysicalToDigital,
however to be used for an array

170

meUtiltiyExtractValues Extracting the values for one channel
from the data buffer

165

meUtilityPWMStart Starting PWM operation for 8254 173

meUtilityPWMStop Stopping PWM operation 174

meUtilityPWMRestart Restart PWM operation without reset 175

4.2.1 Query-Functions

meQueryInfoDevice

 Description

Detailed information of the specified device. This is a PCI orientated func-

tion and some parameters have no meaning for ME-Synapse USB or ME-

Synapse LAN.

 Function Declaration:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 83 Meilhaus Electronic

int meQueryInfoDevice(int iDevice, int *piVendorId, int *piDeviceId, int *pi-

SerialNo, int *piBusType, int *piBusNo, int *piDevNo, int*piFuncNo, int

*piPlugged);

<iDevice>

Index of the device to be accessed.

<piVendorId> (r)

Pointer returns vendor ID of the device.

 0x1402 for Meilhaus PCI boards.

 0x1B04 for USB devices like e.g. ME-1 (ME-Synapse USB).

<piDeviceId> (r)

Pointer returns the device ID (e.g. 0x6034).

<piSerialNo> (r)

Pointer returns the serial number of the device.

<piBusType> (r)

Pointer returns the bus type by which the device is connected with the PC

(PCI/cPCI, USB).

 ME_BUS_TYPE_INVALID invalid return value

 ME_BUS_TYPE_PCI PCI/cPCI bus

 ME_BUS_TYPE_USB Universal Serial Bus (USB)

<piBusNo> (r)

 PCI only: Pointer returns the PCI bus number, if several PCI buses are

available in your system (if one bus it is always „0“)

<piDevNo> (r)

 PCI only: Slot number of the board to be accessed.

<piFuncNo> (r)

 PCI: Function number.

<piPlugged> (r)

Pointer indicates whether a device is physically available.

 ME_PLUGGED_INVALID invalid return value

 ME_PLUGGED_IN Device physically available.

 ME_PLUGGED_OUT

Device registered with the ME-iDC (ME-Config-Tool) but not con-nected

with the PC.

 Return Value:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 84 Meilhaus Electronic

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested ID.

meQueryNameDeviceDriver

 Description:

Function determines the name of the device specific driver module. Exam-

ple: “ME-6000” (Windows).

 Function Declaration:

int meQueryNameDeviceDriver(int iDevice, char *pcName, int iCount);

<iDevice>

Index of the device to be accessed.

<pcName> (r)

Pointer to a string with the name of the driver module.

<iCount>

Buffer size in bytes for the driver module. Recommended: ME_DE-

VICE_DRIVER_NAME_MAX_COUNT.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested ID.

 ME_ERRNO_USER_BUFFER_SIZE: Buffer size of <pcName> too

small.

meQueryNameDevice

 Description:

Function determines the device code name. Example: „ME-6000ISLE/16“.

 Function Declaration:

int meQueryNameDevice(int iDevice, char *pcName, int iCount);

<iDevice>

Index of the device to be accessed.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 85 Meilhaus Electronic

<pcName>

Buffer for the device name.

<iCount>

Buffer size in bytes for device name. Recommended: ME_DE-

VICE_NAME_MAX_COUNT.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested ID.

 ME ERRNO_USER_BUFFER_SIZE: Buffer size of <pcName> too

small.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 86 Meilhaus Electronic

meQueryDescriptionDevice

 Description:

Device description. Example: “ME-6000ISLE/4 isle device, 4 analog out-

puts”.

 Function Declaration:

int meQueryDescriptionDevice(int iDevice, char *pcDescription, int iCount);

<iDevice>

Index of the device to be accessed.

<pcDescription> (r)

Buffer for device description.

<iCount>

Buffer size in bytes for device description. Recommended: ME_DE-

VICE_DESCRIPTION_MAX_COUNT.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_USER_BUFFER_SIZE: Buffer size of <pcDescrip-

tion> too small.

meQueryVersionLibrary

 Description:

Function determines the version number of the library.

 Function Declaration:

int meQueryVersionLibrary(int *piVersion);

<piVersion> (r)

Version number of the library (hexadecimal).

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 87 Meilhaus Electronic

meQueryVersionMainDriver

 Description:

Function determines the version number of the main driver.

 Function Declaration:

int meQueryVersionMainDriver(int *piVersion);

<piVersion> (r)

Version number of the main driver (hexadecimal). The two higher si-gnifi-

cant bytes (main version, sub version) must be the same one as the ver-

sion number of the device specific driver module (see meQueryVersionDe-

viceDriver()). The lower significant bytes (build number can differ.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meQueryVersionDeviceDriver

 Description:

Version number of the device specific driver module.

 Function Declaration:

int meQueryVersionDeviceDriver(int iDevice, int *piVersion);

<iDevice>

Index of the device to be accessed.

<piVersion> (r)

Version number of the device specific driver module (hexadecimal). The

two higher significant bytes (main version, sub version) must be the same

one as the version number of the device specific driver module (see me-

QueryVersionMainDriver()). The lower significant bytes (build number)

can differ.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested ID.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 88 Meilhaus Electronic

meQueryNumberDevices

 Description:

Returns the number of devices recognized by the ME-iDS.

 Function Declaration:

int meQueryNumberDevices(int *piNumber);

<piNumber> (r)

Number of recognized devices.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meQueryNumberSubdevices

 Description:

Returns the number of subdevices on a queried device.

 Function Declaration:

int meQueryNumberSubdevices(int iDevice, int *piNumber);

<iDevice>

Index of the device to be accessed.

<piNumber> (r)

Number of subdevices on the device.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

meQuerySubdeviceType

 Description:

Returns type and subtype of the specified subdevice.

 Function Declaration:

int meQuerySubdeviceType(int iDevice, int iSubdevice, int *piType, int*pi-

Subtype);

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 89 Meilhaus Electronic

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be queried.

<piType> (r)

Returns the subdevice type:

 ME_TYPE_AO Analog output

 ME_TYPE_AI Analog input

 ME_TYPE_DIO Digital input/output (bi-direct.)

 ME_TYPE_DO Digital output

 ME_TYPE_DI Digital input

 ME_TYPE_FIO Frequency input/output

 ME_TYPE_FO Frequency output

 ME_TYPE_FI Frequency input

 ME_TYPE_CTR Counter

 ME_TYPE_EXT_IRQ External interrupt

 ME_TYPE_FPGA FPGA - planned!

<piSubtype> (r)

Returns the subtype of the subdevice:

 ME_SUBTYPE_SINGLE

Subdevice is able to acquire resp. output single values.

 ME_SUBTYPE_STREAMING

The subdevice can acquire values continuously resp. output a data

stream.

 ME_SUBTYPE_CTR_8254

Subdevice with a counter of type 8254.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

meQueryNumberChannels

 Description:

Function determines the number of channels of a subdevice.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 90 Meilhaus Electronic

 Function Declaration:

int meQueryNumberChannels(int iDevice, int iSubdevice, int *piNumber);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice that is queried.

<piNumber> (r)

Returns the number of channels of the specified subdevice.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

meQueryNumberRanges

 Description:

Returns the number of measurement ranges of a subdevice. Parameter

<iUnit> allows a restriction of the query to a specific physical unit.

 Function Declaration:

int meQueryNumberRanges(int iDevice, int iSubdevice, int iUnit, int

*piNumber);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice that is queried.

<iUnit>

Measurement ranges with the specified physical unit should be included in

the query (see also meQueryRangeByMinMax()):

 ME_UNIT_VOLT Query only for voltage ranges

 ME_UNIT_AMPERE Query only for current ranges

 ME_UNIT_ANY Query for all ranges

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 91 Meilhaus Electronic

<piNumber> (r)

Returns the number of ranges supporting the specified unit(s).

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_NOT_SUPPORTED: function is not supported by subde-

vice.

meQueryRangeInfo

Description:

Function determines details of the range: limits, resolution and physical

unit of the specified measurement range.

 Function Declaration:

int meQueryRangeInfo(int iDevice, int iSubdevice, int iRange, int *piUnit,

double *pdMin, double *pdMax, int *piMaxData);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice that is queried.

<iRange>

Index of measurement range that is queried.

<piUnit> (r)

Pointer, which returns the physical unit of the specified measurement

range.

 ME_UNIT_VOLT Voltage range

 ME_UNIT_AMPERE Current range

 ME_UNIT_INVALID Invalid return value

<pdMin> (r)

Returns the lower limit of the requested range. It applies to the physical

unit specified in parameter <piUnit>.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 92 Meilhaus Electronic

<pdMax> (r)

Returns the upper limit of the requested range. It applies to the physical

unit specified in parameter <piUnit>.

<piMaxData> (r)

Returns the maximum resolution of the measurement range (e.g. for 16-bit

resolution the value 65535 (0xFFFF) is returned).

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_RANGE: on requested subdevice no reque-

sted range available.

 ME_ERRNO_NOT_SUPPORTED: function is not supported by subde-

vice.

meQuerySubdeviceCaps

 Description:

Function determines the special capabilities of a subdevice which are re-

turned by the parameter <piCaps> of the function meQuerySubdevice-

Caps(). Further details can be determined by the function meQuery-Sub-

deviceCapsArgs().

 Function Declaration:

int meQuerySubdeviceCaps(int iDevice, int iSubdevice, int *piCaps);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice that is queried.

<piCaps> (r)

Pointer to a bit-coded integer value which returns the special capabilities

of the specified subdevice. A bit which is set indicates that the subdevice

provides the appropriate capability. If several capabilities apply, the values

are ORed bit by bit.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 93 Meilhaus Electronic

Example: a subdevice provides a digital trigger input which triggers alter-

natively on a rising, falling or any (i.e. rising or falling) edge. The returned

value is: 0x000E8000.

Note: You find a table of all capabilities which can be queried here in ap-

pendix B1 on page 187.

 ME_CAPS_NONE (0x00000001) Subdevice has no special capabili-

ties.

Applies for subdevices of type ME_TYPE_AI, ME_TYPE_AO,

ME_TYPE_DI, ME_TYPE_DO and ME_TYPE_DIO:

Replace xx depending on the subdevice type by AI, AO or DIO (see also

table 15 from page 190).

 ME_CAPS_xx_TRIG_DIGITAL (0x00008000) Subdevice provides a

digital trigger input.

 ME_CAPS_xx_TRIG_ANALOG (0x00010000) Subdevice provides an

analog trigger input.

 ME_CAPS_xx_TRIG_EDGE_RISING (0x00020000) Subdevice can

trigger specifically on a rising edge.

 ME_CAPS_xx_TRIG_EDGE_FALLING (0x00040000) Subdevice can

trigger specifically on a falling edge.

 ME_CAPS_xx_TRIG_EDGE_ANY (0x00080000) Subdevice can trig-

ger on a rising or falling edge.

Applies for subdevices of type ME_TYPE_AI:

 ME_CAPS_AI_TRIG_SYNCHRONOUS (0x00000001)

Subdevice can be started synchronously.

 ME_CAPS_AI_FIFO (0x00000002)

Subdevice provides FIFO for acquired values.

 ME_CAPS_AI_FIFO_THRESHOLD (0x00000004)

Possibility to set the threshold (number of values) at which the values

should be retrieved from the AI-FIFO. Can be set in parameter

<iFIFOIrqThreshold> of the function meIOStreamConfig().

 ME_CAPS_AI_SAMPLE_HOLD (0x00000008)

Subdevice provides a „Sample & Hold“ unit for simultaneous acquisi-

tion.

Applies for subdevices of type ME_TYPE_AO:

 ME_CAPS_AO_TRIG_SYNCHRONOUS (0x00000001)

Subdevice can be started synchronously.

 ME_CAPS_AO_FIFO (0x00000002)

Subdevice provides FIFO for values to be output.

 ME_CAPS_AO_FIFO_THRESHOLD (0x00000004)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 94 Meilhaus Electronic

Possibility to set the threshold (number of values) at which the AO-

FIFO should be reloaded. Can be set in parameter

<iFIFOIrqThreshold> of the function meIOStreamConfig().

Applies for subdevices of type ME_TYPE_DI, ME_TYPE_DO and

ME_TYPE_DIO:

 ME_CAPS_DIO_DIR_BIT (0x00000001)

Direction can be set per bit (1 bit block).

 ME_CAPS_DIO_DIR_BYTE (0x00000002)

Direction can be set per byte (8-bit block).

 ME_CAPS_DIO_DIR_WORD (0x00000004)

Direction can be set per word (16-bit block).

 ME_CAPS_DIO_DIR_DWORD (0x00000008)

Direction can be set per long-word (32-bit block).

 ME_CAPS_DIO_SINK_SOURCE (0x00000010)

Output driver of the specified subdevice can be switched between sink

and source operation.

 ME_CAPS_DIO_BIT_PATTERN_IRQ (0x00000020)

On bit-pattern match an interrupt can be triggered.

 ME_CAPS_DIO_BIT_MASK_IRQ_EDGE_RISING (0x00000040)

On a rising edge of at least one of the active bits an interrupt can be

triggered.

 ME_CAPS_DIO_BIT_MASK_IRQ_EDGE_FALLING (0x00000080)

On a falling edge of at least one of the active bits an interrupt can be

triggered.

 ME_CAPS_DIO_BIT_MASK_IRQ_EDGE_ANY (0x00000100)

On a rising or falling edge of at least one of the active bits an interrupt

can be triggered.

 ME_CAPS_DIO_OVER_TEMP_IRQ (0x00000200)

On overheating of the driver chip an interrupt can be triggered

(e.g.: ME-5810/8200).

Applies for subdevices of type ME_TYPE_CTR:

 ME_CAPS_CTR_CLK_PREVIOUS (0x00000001)

Possibility to connect the clock input (CLK) of a counter with the coun-

ter output (OUT) of the previous counter.

 ME_CAPS_CTR_CLK_INTERNAL_1 MHZ (0x00000002)

Possibility to source the counter with an internal clock of 1 MHz.

 ME_CAPS_CTR_CLK_INTERNAL_10 MHZ (0x00000004) Possibility

to source the counter with an internal clock of 10 MHz.

 ME_CAPS_CTR_CLK_EXTERNAL (0x00000008)

Possibility to source the counter with an external clock source.

Applies for subdevices of type ME_TYPE_EXT_IRQ:

 ME_CAPS_EXT_IRQ_EDGE_RISING (0x00000001)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 95 Meilhaus Electronic

Triggers an interrupt on a rising edge at the IRQ input.

 ME_CAPS_EXT_IRQ_EDGE_FALLING (0x00000002)

Triggers an interrupt on a falling edge at the IRQ input.

 ME_CAPS_EXT_IRQ_EDGE_ANY (0x00000004)

Triggers an interrupt on any edge (rising or falling) at the IRQ input.

Applies for subdevices of type ME_TYPE_FO:

 ME_CAPS_FIO_SINK_SOURCE (0x00000010)

Output driver of the specified subdevice can be switched between sink

and source operation.

See also appendix B1 on page 187 for more information.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

meQuerySubdeviceCapsArgs

 Description:

This function determines detailed information of a specific capability of a

subdevice. See also function meQuerySubdeviceCaps().

 Function Declaration:

int meQuerySubdeviceCapsArgs(int iDevice, int iSubdevice, int iCap,

int*piArgs, int iCount);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be queried.

<iCap>

Select the capability to be queried (only an extract):

 ME_CAP_AI_FIFO_SIZE (0x001D0000)

Query the size (number of values) of the AI-FIFO.

 ME_CAP_AO_FIFO_SIZE (0x001F0000)

Query the size (number of values) of the AO-FIFO.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 96 Meilhaus Electronic

 ME_CAP_CTR_WIDTH (0x00200000) Query the width of the counter

(in bits).

See appendix B2 on page 190 for a complete list of capabilities which can

be queried here.

<piArgs> (r)

Pointer to an array of type integer, which returns the queried values.

<iCount>

Number of values in parameter <piArgs>.

As a rule „1“, if the returned values fit into an integer.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER_ passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRN0_INVALID_CAP: Passed code is invalid or not supported

on subdevice.

 ME_ERRNO_INVALID CAP_ARG COUNT: Parameter <Count>

doesnot fit for queried capability code.

meQuerySubdeviceByType

 Description

Function determines the index of the first available subdevice which

matches the features searching for. The query always starts with the sub-

device index <iStartSubdevice>.

Note: Internally used hardware resources are not reported.

 Function Declaration:

int meQuerySubdeviceByType(int iDevice, int iStartSubdevice, int iType,

int iSubtype, int *piSubdevice);

<iDevice>

Index of the device to be accessed.

<iStartSubdevice>

Index of the subdevice the query starts with.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 97 Meilhaus Electronic

<iType>

Type of the subdevice searched for:

 ME_TYPE_AI Analog acquisition

 ME_TYPE_AO Analog output

 ME_TYPE_DIO Digital input/output (bi-direct.)

 ME_TYPE_DO Digital output

 ME_TYPE_DI Digital input

 ME_TYPE_FIO Frequency input/output

 ME_TYPE_FO Frequency output

 ME_TYPE_FI Frequency input

 ME_TYPE_CTR Counter

 ME_TYPE_EXT_IRQ External interrupt

 ME_TYPE_FPGA „FPGA“ - planned!

 - only for advanced users

<iSubtype>

The capabilities of the subdevice searched for can be specified more de-

tailed if necessary:

 ME_SUBTYPE_ANY Sub-type doesn´t matter.

 ME_SUBTYPE_SINGLE

Acquisition resp. output of a single value.

 ME_SUBTYPE_STREAMING

Continuous acquisition resp. output by using special hardware capabili-

ties (e.g. FIFOs).

 ME_SUBTYPE_CTR_8254

Subdevice with a counter of type 8254.

<piSubdevice> (r)

Returns the index of the first matching subdevice.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_NO_MORE_SUBDEVICE_TYPE: Matching subdevice

not found.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 98 Meilhaus Electronic

meQueryRangeByMinMax

 Description:

Function determines the appropriate measurement range when the range

and the limits of the range are given.

 Function Declaration:

int meQueryRangeByMinMax(int iDevice, int iSubdevice, int iUnit, dou-

ble*pdMin, double *pdMax, int *piMaxData, int *piRange);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice that is queried.

<iUnit>

Restrict the range query to the physical unit chosen here:

 ME_UNIT_VOLT Only voltage ranges

 ME_UNIT_AMPERE Only current ranges

 ME_UNIT_ANY All ranges

<pdMin> (r/w)

(w): Passing the lower limit of the searched range.

(r): Returns the lower limit for the range determined (see parameter.

<piRange>).

<pdMax> (r/w)

(w): Passing the upper limit of the searched range.

(r): Returns the upper limit for the range determined (see parameter

<piRange>).

<piMaxData> (r)

Returns the maximum resolution for the range determined (e.g. 65535

(0xFFFF) for 16-bit resolution).

<piRange> (r)

The index of the best fitting measurement range is returned. Always the

smallest range is chosen, which includes the range limits searched for.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 99 Meilhaus Electronic

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_UNIT: unit's type not supported on subde-vice.

 ME_ERRNO_INVALID_MIN_MAX: lower limit is higher than up-per.

 ME_ERRNO_NO_RANGE: fitted range not found.

4.2.2 Property Functions

With the so-called property functions you have the possibility to read and if

applicable to write all general and hardware specific properties and attrib-

utes. The entity of all properties is like a tree structure. By the so-called

property path you can access to a device, a subdevice, a channel or a

range and so on.

All property functions are implemented as ANSI and Unicode (UTF-16)

versions. The ANSI versions have suffix 'A' and use NULL terminated

ANSI strings (char*). The unicode versions with the suffix 'W' use wide

character strings (wchar_t*).

Depending on the value to be passed (integer, double, string) the appro-

priate function must be used to read resp. write the value (see also param-

eter <piValue> of the function mePropertyGetIntA() on page 115).

Note: The property functions are available with ME-iDS 2.0 and higher

and completely implemented for the ME-5000 series under Windows. For

all other devices only the general properties are supported at the moment.

In future releases of the ME-iDS this will be extended and completed more

and more.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 100 Meilhaus Electronic

mePropertyGetIntA

mePropertyGetIntW

 Description:

By this function you can query properties of type ME_PROPERTY_TYPE_

INT via the property path. You can use this function also to query for an

unknown type of property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertyGetIntA(char* pcPropertyPath, int* piValue);

int mePropertyGetIntW(wchar_t* pcPropertyPath, int* piValue);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<piValue> (r)

Pointer to buffer which returns the property as integer value.

Beside the normal return values the following constants are returned if

quering for the property PropertyType:

 ME_PROPERTY_TYPE_CONTAINER: contains further properties.

 ME_PROPERTY_TYPE_BOOL: Queried property is of type boolean: 0

(FALSE) or „1“ (TRUE) for off/on resp. inactive/active.

 ME_PROPERTY_TYPE_INT: Queried property is of type integer.

 ME_PROPERTY_TYPE_DOUBLE: Queried property is of type double.

 ME_PROPERTY_TYPE_STRING: Queried property is of type string.

 ME_PROPERTY_TYPE_DEFINE: Queried property returns a prede-

fined constant as an integer value. See also function meProperty-

GetString on page 119.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 101 Meilhaus Electronic

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNKNOWN: The given attrib-

ute is unknown.

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNSUPPORTED: The given

attribute is not supported.

mePropertyGetDoubleA

mePropertyGetDoubleW

 Description:

By this function you can query properties of type ME_PROPERTY_TYPE_

DOUBLE via the property path. Use the function mePropertyGetInt() first, if

you want to determine the unknown type of a property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertyGetDoubleA(char* pcPropertyPath, double* pdValue); int

mePropertyGetDoubleW(wchar_t*pcPropertyPath, double* pdValue);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<pdValue> (r)

Pointer to buffer which returns the property as double value.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 102 Meilhaus Electronic

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNKNOWN: The given attrib-

ute is unknown.

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNSUPPORTED: The given

attribute is not supported.

mePropertyGetStringA

mePropertyGetStringW

Description:

By this function you can query properties of type ME_PROPERTY_TYPE_

STRING via the property path. Use the function mePropertyGetInt() first, if

you want to determine the unknown type of a property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertyGetStringA(char* pcPropertyPath, char* pcValue, int iBuff-

erLength); int mePropertyGetStringW(wchar_t* pcPropertyPath, wchar_t*

pcValue, int iBufferLength);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<pcValue> (r)

Pointer to a buffer, which contains the value as a NULL terminated string,

after successful calling the function.

<iBufferLength>

Buffer length in number of characters (not bytes) including terminating

NULL character. The length required can be queried by the attribute

Length.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 103 Meilhaus Electronic

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

 ME_ERRNO_PROPERTY_BUFFER_TOO_SMALL: The size of the

given buffer is too small for the string.

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNKNOWN: The given attrib-

ute is unknown.

 ME_ERRNO_PROPERTY_ATTRIBUTE_UNSUPPORTED: The given

attribute is not supported.

mePropertySetIntA

mePropertySetIntW

Description:

By this function you can set properties of type ME_PROPERTY_TYPE_

INT via the property path. Use the function mePropertyGetInt() first, if you

want to determine the unknown type of a property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertySetIntA(char* pcPropertyPath, int iValue); int meProper-

tySetIntW(wchar_t* pcPropertyPath, int iValue);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<iValue>

The property is passed as an integer value.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 104 Meilhaus Electronic

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

 ME_ERRNO_PROPERTY_SELECTION_INVALID: The given value is

not part of a valid define.

 ME_ERRNO_PROPERTY_VALUE_INVALID: The value is outside of

the valid range. You can query the valid minimum and maximum val-

ues by the attributes MinValue and MaxValue.

 ME_ERRNO_PROPERTY_READ_ONLY: The given property is read

only.

mePropertySetDoubleA

mePropertySetDoubleW

 Description:

By this function you can set properties of type ME_PROPERTY_TYPE_

DOUBLE via the property path. Use the function mePropertyGetInt() first, if

you want to determine the unknown type of a property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertySetDoubleA(char* pcPropertyPath, double dValue); int me-

PropertySetDoubleW(wchar_t* pcPropertyPath, double dValue);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<dValue>

The property is passed as a double value.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 105 Meilhaus Electronic

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

 ME_ERRNO_PROPERTY_VALUE_INVALID: The value is outside of

the valid range. You can query the valid minimum and maximum val-

ues by the attributes MinValue and MaxValue.

 ME_ERRNO_PROPERTY_READ_ONLY: The given properties read

only.

mePropertySetStringA

mePropertySetStringW

 Description:

By this function you can set properties of type ME_PROPERTY_TYPE_

STRING via the property path. Use the function mePropertyGetInt() first, if

you want to determine the unknown type of a property (PropertyType).

For more details concerning the properties supported by your hardware

please refer to the ME-iDS help file (*.chm).

Note: This function is available with ME-iDS 2.0 and higher.

 Function Declaration:

int mePropertySetStringA(char* pcPropertyPath, char* pcValue); int me-

PropertySetStringW(wchar_t* pcPropertyPath, wchar_t* pcValue);

<pcPropertyPath> (w)

Pointer to the property path to be accessed.

<pcValue> (w)

A pointer to the property as a NULL terminated string must be passed.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_PROPERTY_CONTAINER: A value from a container

should be read.

 ME_ERRNO_PROPERTY_DATA_TYPE: The value in the given prop-

erty path cannot be read as an integer.

 ME_ERRNO_PROPERTY_PATH: The given property path is not valid.

 ME_ERRNO_PROPERTY_INDEX: The given index in property path is

outside the valid range.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 106 Meilhaus Electronic

 ME_ERRNO_PROPERTY_UNKNOWN: The given property is un-

known.

 ME_ERRNO_PROPERTY_VALUE_INVALID: The string is too long. By

the attribute MaxLength the required buffer length in characters (not

bytes) including the terminating NULL character can be queried.

 ME_ERRNO_PROPERTY_READ_ONLY: The given properties read

only.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 107 Meilhaus Electronic

4.2.3 Input/Output Functions

meIOResetDevice

 Description:

The device will be reset. All currently running operations of the specific de-

vice are cancelled:

 All hardware actions are stopped.

 Hardware is set to default (idle) state.

 Internal states are cleared.

 Buffers are flushed (emptied).

 Interrupt counters are set to zero.

 Function Declaration:

int meIOResetDevice(int iDevice, int iFlags);

<iDevice>

Index of the device to be reset.

<iFlags>

 ME_IO_RESET_DEVICE_NO_FLAGS

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_LOCKED: device or some of subdevices are protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

meIOIrqStart

Description:

This function starts the interrupt handler for the interrupt subdevice

wanted. You can choose interrupt source, trigger edge, reference bit pat-

tern, etc.

On demand you can install an user-defined callback function by the func-

tion meIOIrqSetCallback() which is called on each interrupt.

 Function Declaration:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 108 Meilhaus Electronic

int meIOIrqStart(int iDevice, int iSubdevice, int iChannel, int iIrqSource, int

iIrqEdge, int iIrqArg, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iChannel>

Index of the interrupt channel within the selected subdevice, otherwise it

should to be set to „0“.

<iIrqSource>

Selection of interrupt source:

 ME_IRQ_SOURCE_DIO_LINE

Interrupt source is a dedicated external interrupt input. <iIrqArg> is

not in use and has to be set to „0“. <iIrqEdge> is in use.

 ME_IRQ_SOURCE_DIO_PATTERN (only for digital input ports) Oper-

ation mode „Bit-Pattern Match“ (e.g.: ME-5810,

ME-8100/8200): When the current bit pattern at the digital port matches

the reference bit pattern to be passed in <iIrqArg> an interrupt is

triggered. <iIrqEdge> is not in use and has to be set to

ME_IRQ_EDGE_NOT_USED.

 ME_IRQ_SOURCE_DIO_MASK (for digital input ports only) Operation

mode „Bit-Pattern Change“ (e.g.: ME-5100/5810, ME-8100/8200):

 On change of at least one bit, masked as „sensitive“ an interrupt is trig-

gered. The reference bit pattern is passed by the <iIrqArg> parame-

ter. <iIrqEdge> is in use.

 ME_IRQ_SOURCE_DIO_OVER_TEMP

On overheating of the driver chip an interrupt is triggered (e.g.: ME-

5810/8200). <iIrqEdge> is not in use and has to be set to

ME_IRQ_EDGE_NOT_USED. <iIrqArg> is not in use and has to be

set to “0”.

<iIrqEdge>

Selection of the edge on which an interrupt should be triggered.

 ME_IRQ_EDGE_NOT_USED: Choosing an edge is not supported.

 ME_IRQ_EDGE_RISING: Interrupt on rising edge.

 ME_IRQ_EDGE_FALLING: Interrupt on falling edge.

 ME_IRQ_EDGE_ANY: Interrupt on rising or falling edge.

<iIrqArg>

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 109 Meilhaus Electronic

Argument to configure the modes „Bit-Pattern Match“ (ME_IRQ_

SOURCE_DIO_PATTERN) and „Bit-Pattern Change“ (ME_IRQ_

SOURCE_DIO_MASK). In other cases pass the value „0“ here.

It applies to the boards of type ME-8100/8200 for example: Depending on

the interrupt source in parameter <iIrqSource> a reference bit pattern is

written into the appropriate register. The width of the bit pattern is deter-

mined by the parameter <iFlags>.

 Interrupt on bit-pattern match“:

Argument (reference bit pattern) is written into the comparison register.

If the current bit pattern at the digital port matches the reference bit pat-

tern an interrupt is triggered.

 “Interrupt on bit-pattern change“:

Argument (reference bit pattern) is written into the mask register. When

the state of at least one bit set to „1“ in the mask register toggles (0 →

1 or 1 → 0), an interrupt occurs. The bit pattern of the digitalport which

triggered the interrupt can be checked by the parameter <piValue> of

the function meIOIrqWait() („BLOCKING“ mode) or with the callback

function meIOIrqSetCallback().

<iFlags>

 ME_IO_IRQ_START_NO_FLAGS

No flags in use. Default settings will be used.

 ME_IO_IRQ_START_DIO_BIT

The reference bit pattern is one bit wide.

 ME_IO_IRQ_START_DIO_BYTE

The reference bit pattern is one byte wide (8 bit).

 ME_IO_IRQ_START_DIO_WORD

The reference bit pattern is one word wide (16 bit).

 ME_IO_IRQ_START_DIO_DWORD

The reference bit pattern is one long-word wide (32 bit).

 ME_IO_IRQ_START_PATTERN_FILTERING (for „Bit-Pattern

Match“ only): Enables filtering of the result.

 Possibly the „-Match“ mode can generate many false interrupts. In the-

ory changing of more than one bit on a multi-bit port can happen at the

same moment. In practice there is always a (smaller or bigger) shift be-

tween toggling the bits. Because pattern match works asynchronously

and very fast some interstates are cached. Example: when two bits are

changing from 00b to 11b states 01b and 10b can be detected by com-

parator. If the filter is enabled in interrupt handling routine current port

state is compared with requested value.

 ME_IO_IRQ_START_EXTENDED_STATUS (for „Bit-Pattern Change“

only): Set extended IRQ status format as default. See also function

meIOIrqWait().

Return Value

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 110 Meilhaus Electronic

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: no subdevice mapped to re-

quested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_INVALID_IRQ_SOURCE: wrong mode or not suppor-ted

by subdevice.

 ME_ERRNO_INVALID_IRQ_EDGE: set edge not supported.

 ME_ERRNO_INVALID_IRQ_ARG: wrong configuration argument /

argument not supported.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRN0_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRN0_START_THREAD: creating callback thread failed. (Win-

dows only).

meIOIrqStop

 Description:

With this function the interrupt handler is stopped:

 Cancels any pending action.

 Interrupts will be disabled (in hardware and operating system).

 Function Declaration:

int meIOIrqStop(int iDevice, int iSubdevice, int iChannel, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iChannel>

Index of the interrupt channel within the selected subdevice, otherwise it

should be set to „0“.

<iFlags>

 ME_IO_IRQ_STOP_NO_FLAGS

Return Value:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 111 Meilhaus Electronic

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: no subdevice mapped to re-

quested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

meIOIrqWait

Description:

This function waits as long as an interrupt occurs and serves for analyzing

the interrupt event. This is completely independent from meIOIrqStart(). In

multi-threading applications there is no need for synchronization. meIO-

IrqWait() can be called before or after meIOIrqStart() and waits for the first

interrupt event. If an interrupt occurs before meIOIrqWait() is called the

function returns immediately and reports it. You must decide whether you

want to install a callback function by meIOIr-qSetCallback() before calling

the function meIOIrqStart().

 Function Declaration:

int meIOIrqWait(int iDevice, int iSubdevice, int iChannel, int *piIrqCount, int

*piValue, int iTimeOut, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the interrupt subdevice.

<iChannel>

Index of the interrupt channel within the selected subdevice of type

ME_TYPE_EXT_IRQ otherwise it has to be set to „0“.

<piIrqCount> (r)

Parameter returns the number of interrupts from the specified channel

since starting. meIOResetDevice() and meIOResetSubdevice() clear that

counter.

<piValue> (r)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 112 Meilhaus Electronic

Parameter returns the interrupt status. There are two formats (configured

by parameter <iFlags>):

 “Simple format“: One status bit per IRQ line. The status bit is set

when an interrupt was generated by corresponding line. Also several

status bits (b15…0) can be set, e.g. in the operation modes “bit pattern

match“ and „bit-pattern change“.

 “Extended format“: Two status bits per IRQ line. One status bit is for

a rising edge (0 → 1) and one for a falling edge (1 → 0). The falling

edge bits are in the lower word (b15…0) and the rising edge bits are in

the upper word (b31…16). Interesting e.g. in the operation mode „bit-

pattern change“.

<iTimeOut>

Time-out value in milliseconds. If no interrupt was detected within the de-

fined time, the operation will be cancelled. If no time-out value should be

used, pass the value „0“.

<iFlags>

 ME_IO_IRQ_WAIT_NO_FLAGS

No flags in use. Default settings will be used.

 ME_IO_IRQ_WAIT_NORMAL_STATUS

Use „simple format“ for interrupt status (see <piValue>)

 ME_IO_IRQ_WAIT_EXTENDED_STATUS

Use „extended format“ for interrupt status (see <piValue>)

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: no subdevice mapped to re-

quested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_CANCELLED: Subdevice was reset.

 ME_ERRNO_SIGNAL: Driver was unloaded.

 ME_ERRNO_PREVIOUS_CONFIG: Subdevice wrongly configured.

meIOIrqSetCallback

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 113 Meilhaus Electronic

Description:

By this function you can install a callback function which waits for an inter-

rupt in the background.

 Windows:

- Callback function is dependent on meIOIrqStart() and meI-

OIrqStop().

- Background task is created within meIOIrqStart() execution

and cancelled in meIOIrqStop(). Therefore meIOIrqSet-

Callback() can only be called before meIOIrqStart().

- Works exactly like meIOIrqWait() without any flags set

(ME_IO_IRQ_WAIT_NORMAL_STATUS and

ME_IO_IRQ_WAIT_EXTENDED_STATUS are NOT suppor-

ted).

- Only one callback function can be installed per subdevice.

To deinstall/cancel the callback function (all registered instances) for the

selected subdevice call meIOIrqSetCallback() and pass NULL in

<pCallback>.

 Function Declaration:

int meIOIrqSetCallback(int iDevice, int iSubdevice, meIOIrqCB_t

pCallback, void *pCallbackContext, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the interrupt subdevice.

<pCallback>

Pointer to a user-defined callback function. This function is called when an

interrupt occurred. If the function exits with a return value different than

ME_ERNNO_SUCCESS (0x00) an interrupt is instantly stopped (meI-

OIrqStop() is called).

<pCallbackContext> (w)

User-defined pointer passed to the callback function. This parameter is op-

tional. If you don´t want to use it, pass NULL.

<iFlags>

 ME_IO_IRQ_SET_CALLBACK_NO_FLAGS No flags in use. Default

settings will be used.

 ME_IO_IRQ_WAIT_NORMAL_STATUS (only Linux)

Use „simple format“ for interrupt status (see parameter <iValue>)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 114 Meilhaus Electronic

 ME_IO_IRQ_WAIT_EXTENDED_STATUS (only Linux) Use „extended

format“ for interrupt status (see parameter <iValue>)

 Type Definition meIOIrqCB_t

typedef int (*meIOIrqCB_t)(

int iDevice,

int iSubdevice,int iChannel,int iIrqCount, int

iValue,

void *pvContext,

int iErrorCode);

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 115 Meilhaus Electronic

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the interrupt subdevice.

<iChannel>

Index of the interrupt channel within the selected subdevice of type

ME_TYPE_EXT_IRQ otherwise it has to be set to „0“.

<iIrqCount>

Parameter returns the number of interrupts from the specified channel

since starting. See also parameter <piIrqCount> of function meIOIr-

qWait().

<iValue>

Parameter returns the interrupt status. There are two formats (see also pa-

rameter <iFlags> of function meIOIrqWait()):

 “Simple format“: each bit represents one bit. It is set when an inter-

rupt was generated by this bit. More than one bit can be set.

 “Extended format“: Each line is represented by two bits. One is for a

rising edge (0 → 1) and one for a falling edge (1 → 0). The falling edge

bits are in the lower word (b15…0) and the rising edge bits are in the

upper word (b31…16).

<pvContext> (w)

User-defined pointer <pCallbackContext>. If you do not want to use this

parameter, pass NULL.

<iErrorCode>

Error code: see error reported by meIOIrqWait().

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: no subdevice mapped to re-

quested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 116 Meilhaus Electronic

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_THREAD_RUNNING: callback thread already is running.

(Windows only).

meIOSetChannelOffset

 Description:

Using the function meIOSetChannelOffset() the anlog input ranges can be

adjusted. If you use the function meIOSetChannelOffset() to change an

offset range you must adjust the final result accordingly by adding this

same offset.

Note: Currently, the offset adjustment only applies to streaming mode. In

single mode the ranges have a fixed offset of 0.0 Volts.

Detailed informations regarding the MEphisto Scope can be found in ap-

pendix B4 on page 221.

 Function Declaration:

int meIOSetChannelOffset(int iDevice, int iSubdevice, int iChannel, int

iRange, double *pdOffset, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iChannel>

Index of the channel whose offset should be adjusted.

<iRange>

Index (0…6) of the measurement range to be used for the measurement.

See also functions meQueryNumberRanges(), meQueryRange-

ByMinMax() and meQueryRangeInfo().

<pdOffset> (r/w)

(w): Pointer to a double value, passing the asked offset [V].

(r): If the asked offset value cannot be realized exactly by the hardware

the currently adjusted value will be returned.

<iFlags>

Flag for extended options:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 117 Meilhaus Electronic

 ME_IO_SET_CHANNEL_OFFSET_NO_FLAGS No flags used. Default

settings.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 118 Meilhaus Electronic

meIOSingleConfig

 Description:

This function prepares a subdevice (AI, AO, digital-I/O, frequency-I/O or

counter) for a „single operation“. Basically, the operation starts after calling

the function meIOSingle() corresponding to the trigger conditions de-

scribed here.

Note: In case of differential measuring only bi-polar input ranges can be

used! Of course the variously trigger modes are only available if the hard-

ware offers the appropriate capabilities.

 Function Declaration:

int meIOSingleConfig(int iDevice, int iSubdevice, int iChannel, int iSingle-

Config, int iRef, int iTrigChan, int iTrigType, int iTrigEdge, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iChannel>

Channel index. See chapter „Single Operation“ on page 42 for details.

<iSingleConfig>

Configuration of measurement ranges, digital ports and counters. See also

chapter 3.4.1 „Single Operation“ on page 37 for details.

 Analog input range. Pass the range returned by the query functions.

 Analog output range. Pass the range returned by the query functions.

Configuration of digital ports, if supported by the respective hardware (see

hardware manual):

 ME_SINGLE_CONFIG_DIO_INPUT Configuring the specified digital

port as an input.

 ME_SINGLE_CONFIG_DIO_OUTPUT Configuring the specified digital

port as an output.

Note: With the ME-5810/8100 you must choose one of the following con-

stants instead of the above one:

 ME_SINGLE_CONFIG_DIO_HIGH_IMPEDANCE

Setting the specified digital output port in high impedance state (e.g.

ME-5810/8100).

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 119 Meilhaus Electronic

 ME_SINGLE_CONFIG_DIO_SINK

Enabling the sink drivers (low-active) for the specified digital output port

(e.g. ME-5810/8100).

 ME_SINGLE_CONFIG_DIO_SOURCE

Enabling the source drivers (high-active) for the specified digital output

port (e.g. ME-5810/8100).

 ME_SINGLE_CONFIG_DIO_BIT_PATTERN

Configuring the specified digital output port (subdevice of type

„ME_TYPE_DO“ or „ME_TYPE_DIO“) for timer-controlled bit-pattern

output. See also parameter <iRef> of this function and parameter

<iFlags> of the function meIOStreamConfig(). Refer to appendix A3

on page 182 for a detailed description.

The following both constants are only required, if the ME-MultiSig system

should not be registered with the ME-iDC (in the pipeline):

 ME_SINGLE_CONFIG_DIO_MUX32M

Specified digital output port will be used for the timer-controlled MUX

operation (streaming operation) of the ME-MultiSig system in combina-

tion with the ME-4680. See also parameter <iRef> of this function.

 ME_SINGLE_CONFIG_DIO_DEMUX32

Specified digital output port will be used for the timer-controlled DE-

MUX operation (streaming operation) of the ME-MultiSig system in

combination with the ME-4680. See also parameter <iRef> of this

function.

Configuration of frequency input/output:

 ME_SINGLE_CONFIG_FIO_INPUT

Configuring the specified channel (subdevice of type „ME_TYPE_FI“

or „ME_TYPE_FIO“) as an input for frequency measurement.

 ME_SINGLE_CONFIG_FIO_OUTPUT Configuring the specified chan-

nel (subdevice of type

„ME_TYPE_FO“ or „ME_TYPE_FIO“) as a frequency generator output.

Operation mode for the counters of type 8254 (a detailled description of

the modes can be found from page 177):

 ME_SINGLE_CONFIG_CTR_ 8254_MODE_0 "Change state at zero".

 ME_SINGLE_CONFIG_CTR_8254_MODE_1 "Retriggerable One-

Shot".

 ME_SINGLE_CONFIG_CTR_8254_MODE_2 "Asymmetric divider".

 ME_SINGLE_CONFIG_CTR_8254_MODE_3 "Symmetric divider".

 ME_SINGLE_CONFIG_CTR_8254_MODE_4 "Counter start by soft-

ware trigger".

 ME_SINGLE_CONFIG_CTR_8254_MODE_5 "Counter start by hard-

ware trigger".

<iRef>

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 120 Meilhaus Electronic

For some channels the ground reference must be defined explicitly (see

also chapter „Single Operation“ on page 37 for details):

 ME_REF_NONE

Default setting (e.g. for standard digital I/O and frequency I/O)

 ME_REF_AI_GROUND

Single ended measurement with reference to ground of AI-section.

 ME_REF_AI_DIFFERENTIAL

Differential measurement without direct ground reference.

 ME_REF_AO_GROUND

Analog output with reference to ground of AO-section.

 ME_REF_AO_DIFFERENTIAL

Differential output without direct ground reference.

The following constants define the clock source of the counters:

 ME_REF_CTR_PREVIOUS

Clock source is the output of previous counter.

 ME_REF_CTR_INTERNAL_1 MHZ

Clock source is the internal 1 MHz crystal oscillator.

 ME_REF_CTR_INTERNAL_10 MHZ

Clock source is the internal 10 MHz crystal oscillator.

 ME_REF_CTR_EXTERNAL

Clock source is an external oscillator.

The following both constants are only required for bit-pattern output and

ME-MultiSig operation if the system should not be registered with the ME-

iDC (in the pipeline). They serve the assignment of low-byte and high-byte

of the 16-bit wide FIFO values to the 8-bit-wide digital ports of the ME-

4680 (only for output ports). See also parameter

<iSingleConfig>:

 ME_REF_DIO_FIFO_LOW Low-byte of the FIFO (Bit 7…0).

 ME_REF_DIO_FIFO_HIGH

High-byte of the FIFO (Bit 15…8).

<iTrigChan>

Trigger channel, if supported by the subdevice, else pass

ME_TRIG_CHAN_DEFAULT (see also chapter 3.4.3.3 „Synchro-nous

Start“ on page 80 for details).

 ME_TRIG_CHAN_DEFAULT

Triggering is done separatly for each channel.

 ME_TRIG_CHAN_SYNCHRONOUS

Including this channel into the sync-list. All channels start synchro-

nously in dependency of further trigger options (e.g. software start or

external trigger).

<iTrigType>

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 121 Meilhaus Electronic

Trigger type for starting of input/output (if supported by subdevice, else

pass ME_TRIG_TYPE_SW). Basically conversion will be started by calling

the function meIOSingle() in accordance with the trigger conditions defined

in this function (meIOSingleConfig()).

 ME_TRIG_TYPE_SW

Start directly after calling the function meIOSingle().

 ME_TRIG_TYPE_EXT_DIGITAL Start by external, digital trigger signal.

 ME_TRIG_TYPE_EXT_ANALOG Start by external, analog trigger sig-

nal.

<iTrigEdge>

Choose the appropriate trigger edge (if supported by the subdevice, else

pass ME_VALUE_NOT_USED):

 ME_TRIG_EDGE_ABOVE

Trigger if the level is above the threshold.

 ME_TRIG_EDGE_UNDER

Trigger if the level is below the threshold.

 ME_TRIG_EDGE_ENTRY

Trigger, if the signal enters a defined window.

 ME_TRIG_EDGE_EXIT

Trigger, if the value leaves a defined window.

 ME_TRIG_EDGE_RISING

Trigger on a rising edge.

 ME_TRIG_EDGE_FALLING

Trigger on a falling edge.

 ME_TRIG_EDGE_ANY

Trigger on a rising or falling edge.

<iFlags>

Flag for extended options:

 ME_IO_SINGLE_CONFIG_NO_FLAGS

No flags used. Default settings.

 ME_IO_SINGLE_CONFIG_DIO_BIT

Digital input/output operation by bit.

 ME_IO_SINGLE_CONFIG_DIO_BYTE

Digital input/output operation by byte (8 bit).

 ME_IO_SINGLE_CONFIG_DIO_WORD

Digital input/output operation by word (16 bit).

 ME_IO_SINGLE_CONFIG_DIO_DWORD

Digital input/output operation by long-word (32 bit).

 ME_IO_SINGLE_CONFIG_CONTINUE

„Helper“ flag for applying the settings made in this function for the

channel passed in parameter <iChannel> and all channels beyond.

E.g.: a subdevice for analog acquisition should have 32 channels. In

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 122 Meilhaus Electronic

<iChannel> the index 4 is passed and this flag is set, i.e. the chan-

nels 4… 31 will be configured identically. This has the advantage, that

significant less write accesses to the device are necessary (especially

for USB devices).

Both of the following constants serve for switching the address LEDs ON

and OFF on the MUX base boards (ME-MUX32-M/S) – see also the ME-

MultiSig manual. In parameter <iChannel> any channel of that one base

board must be selected, whose address LED should be switched:

 ME_IO_SINGLE_CONFIG_MULTISIG_LED_ON Switching the ad-

dress LED on.

 ME_IO_SINGLE_CONFIG_MULTISIG_LED_OFF Switching the ad-

dress LED off.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_INVALID_REF: parameter <iRef> is not correct.

 ME_ERRNO_INVALID_TRIG_CHAN: parameter <iTrigChan>

is not correct.

 ME_ERRNO_INVALID_TRIG_TYPE: parameter <iTrigType> is not

correct.

 ME_ERRNO_INVALID_TRIG_EDGE: parameter <iTrigEdge>

is not correct.

 ME_ERRNO_INVALID_SINGLE_CONFIG: parameter

<iSingleConfig> is not correct.

meIOSingle

 Description:

With this function one or more read/write operations can be processed by

a list. See also chapter 3.4.1 „Single Operation“ on page 37 for details.

Note: If for one or more list entries an external trigger source has been se-

lected, the function waits until the appropriate trigger signal occurs. I.e. if

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 123 Meilhaus Electronic

operation 1 with external trigger is running in blocking mode, operation 2

waits until the external trigger pulse of operation 1 occurs.

 Function Declaration:

int meIOSingle(meIOSingle_t *pSingleList, int iCount, int iFlags);

<pSingleList> (r/w)

Pointer to a list of type meIOSingle_t. Each entry represents a single

read/write operation. If for one or more list entries an external trigger

source has been selected, the function waits until the appropriate trigger

signal occurs.

<iCount>

Number of entries in <pSingleList>.

<iFlags>

 ME_IO_SINGLE_NO_FLAGS

No extended options. Default settings. Execution is stopped on first er-

ror. Return value corresponds with <iErrno> field in the last pro-

cessed <pSingleList> entry.

 ME_IO_SINGLE_NONBLOCKING (Linux only)

Processes the whole single list. When this flag is set execution is pro-

cessed although an error occured for some entries. The function re-

turns ME_ERRNO_SUCCESS when no global error was detected.

<iErrno> fields have to be checked.

 Type Definition meIOSingle

typedef struct meIOSingle {

int iDevice;

int iSubdevice; int iChannel; int iDir;

int iValue;

int iTimeOut; int iFlags; int iErrno;

} meIOSingle_t;

<iDevice> (w)

Index of the device to be accessed.

<iSubdevice> (w)

Index of the subdevice to be accessed.

<iChannel> (w)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 124 Meilhaus Electronic

Channel index resp. index of the group. The size of a group depends of

the flag used in parameter <iFlags>.

In combination with the ME-MultiSig system the MUX resp. DEMUX chan-

nels are chosen by this parameter.

If you use a subdevice with only one channel pass the value „0“. Note: The

number of channels of digital I/O ports depends on the parameter

<iFlags> of this function. I.e. for a 32-bit port applies:

 Bit access (…DIO_BIT): channel index 0…31

 Byte access (…DIO_BYTE): channel index 0…3

 Word access (…DIO_WORD): channel index 0…1

 Langword access (…DIO_DWORD): channel index 0

Example: If you pass the flag ME_IO_SINGLE_TYPE_DIO_ BYTE for a

digital subdevice with 32 bits there are four channels each one byte

(8 bits) wide available.

<iDir> (w)

 ME_DIR_INPUT Read operation

 ME_DIR_OUTPUT Write operation

 ME_DIR_SET_OFFSET Set offset for current channels

 (see also ME-Axon manual)

<iValue> (r/w)

 AI: Measurement value is returned as standardized digital value. Use

the function meUtilityDigitalToPhysical() to convert the digital value into

the correct physical unit.

 AO: Passing voltage/current as standardized digital value. Use the

function meUtilityPhysicalToDigital() to convert the voltage resp. cur-

rent into the correct digital value.

 Digital IO: Read resp. output a 32-bit digital value. Depending on port

width always the lower significant bits are relevant.

 Frequency IO: To read resp. write the period and the duration of the

first phase of the period you have to call the function meIOSingle()

twice. Depending on the value in parameter <iFlags>, either the pe-

riod (ME_IO_SINGLE_TYPE_FIO_TICKS_TOTAL) or the duration of

the first phase of the period (ME_IO_SINGLE_TYPE_

FIO_TICKS_FIRST_PHASE) will be returned resp. passed in ticks by

<iValue> (see also chap. 3.4.1.4.1 on page 42). Use the functions

meIOSingleTicksToTime() and meIOSingleTimeToTicks() for easy con-

version of ticks to seconds and reverse.

 Counter: Writing a start value resp. reading the counter value.

<iTimeOut> (w)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 125 Meilhaus Electronic

Time-out value in milliseconds. If no external trigger pulse was detected

within the defined time interval, the operation will be cancelled. If no exter-

nal trigger is being used or no time-out value is used, pass

ME_VALUE_NOT_USED.

<iFlags> (w)

Extended settings:

 ME_IO_SINGLE_TYPE_NO_FLAGS

No extended options – default settings will be used. For digital ports

the “natural” size is used.

 ME_IO_SINGLE_TYPE_DIO_BIT Digital input/output operation by bit.

 ME_IO_SINGLE_TYPE_DIO_BYTE

Digital input/output operation by byte (8 bit).

 ME_IO_SINGLE_TYPE_DIO_WORD

Digital input/output operation by word (16 bit).

 ME_IO_SINGLE_TYPE_DIO_DWORD

Digital input/output operation by long-word (32 bit).

 ME_IO_SINGLE_TYPE_TRIG_SYNCHRONOUS

Synchronous trigger by software start. Useful for the last channel of

<pSingleList> to start all channels configured for synchronous start

by calling this function. See option ME_TRIG_CHAN_ SYNCHRO-

NOUS in parameter <iTrigChan> of the function meIO- SingleCon-

fig().

 ME_IO_SINGLE_TYPE_NONBLOCKING

(alias: ME_IO_SINGLE_TYPE_WRITE_NONBLOCKING) Operation

will run in background. This means that the function doesnot wait for

execution's end.

Note: Not every subdevice supports nonblocking mode.

 ME_IO_SINGLE_TYPE_FIO_TICKS_TOTAL Read resp. output the

period in <iValue>.

 ME_IO_SINGLE_TYPE_FIO_TICKS_FIRST_PHASE

Read resp. output the duration of the first phase of the period in

<iValue>.

The frequency measurement (frequency counter) can be controlled by an

appropriate combination of the following flags. It is done by bitwise OR-

linking ME_IO_SINGLE_TYPE_FIO_TICKS_TOTAL resp. ME_IO_SIN-

GLE_TYPE_FIO_TICKS_FIRST_PHASE with the following options:

 ME_IO_SINGLE_TYPE_FI_LAST_VALUE

Flag for acquisition of low frequencies repeatedly (see also parameter

<iFlags> of the function meIOSingleConfig()). It must be additionally

OR-linked with the flag ME_IO_SINGLE_TYPE_ NON-BLOCKING bit-

wise.

Starting the frequency output (pulse generator) can be controlled by an

appropriate combination of the following flags. It is done by bitwise OR-

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 126 Meilhaus Electronic

linking ME_IO_SINGLE_TYPE_FIO_TICKS_TOTAL resp. ME_IO_SIN-

GLE_TYPE_FIO_TICKS_FIRST_PHASE with one or more of the following

options.

 ME_IO_SINGLE_TYPE_FO_UPDATE_ONLY

The output value should be updated but not output at once. No linking

with other flags possible. Default: the new value is output immediately.

 ME_IO_SINGLE_TYPE_FO_START_SOFT

The value is output not until the end of the current period (if already

running). Can be bitwise OR-linked with ME_IO_SIN-

GLE_TYPE_FO_START_LOW. Default: the new value is output imme-

diately.

 ME_IO_SINGLE_TYPE_FO_START_LOW

By default the first phase of the rectangular signal is „high“. If the flag is

set, the output starts with „low“ level. Can be bitwise OR-linked with

ME_IO_SINGLE_TYPE_FO_START_SOFT.

 ME_IO_SINGLE_TYPE_TRIG_SYNCHRONOUS

All subdevices, which have been added to the sync-list by parameter

<iTrigChan> of the function meIOSingleConfig() will be started sim-

ultanously (see also chap. 3.4.3.3 on page 74). Default: subdevice

starts independently.

<iErrno>

Error code returned by the particular entry.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_CHANNEL: no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_TIMEOUT: timeout condition occurred.

 ME_ERRNO_PREVIOUS_CONFIG: subdevice was not configured for

required operation.

 ME_ERRNO_SUBDEVICE_BUSY: subdevice is performing other oper-

ation.

meIOSingleTicksToTime

 Description:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 127 Meilhaus Electronic

Converts the number of ticks into the desired time, e.g. period [s] for fur-

ther processing in your application (e.g. frequency measurement). In de-

pendency of parameter <iTimer> of this function the return values from

<piTicksLow> resp. <piTicksHigh> can be passed to the parameter

<iValue> of the function meIOSingle().

Note: The conversion and the allowed value range depend on each sub-

device and their properties. If hardware limits are exceeded, always the

limit values are returned.

Tip: If you need the dimensions frequency and duty-cycle you can calcu-

late them easily by the return values from <pdTime>. It applies:

 Frequency [Hz] = 1/period [s]

 Duty-cycle [%] = („Duration of the first phase of the period“ [s] /period

[s]) × 100

Function Declaration:

int meIOSingleTicksToTime(int iDevice, int iSubdevice, int iTimer, int iTick-

sLow, int iTicksHigh, double *pdTime, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iTimer>

Ticks will be calculated in dependency of the subdevice type and the timer

specified here.

 ME_TIMER_FIO_TOTAL

The period is converted into seconds.

 ME_TIMER_FIO_FIRST_PHASE

The duration of the first phase of the period is converted into

seconds.

<iTicksLow>

The number of ticks (lower significant part, bits 31…0) from parameter

<iValue> of the function meIOSingle() are passed here.

<iTicksHigh>

The number of ticks (higher significant part, bits 63…32) from parameter

<iValue> of the function meIOSingle() are passed here. This parameter

is resevered for future enhancements.

<pdTime> (r)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 128 Meilhaus Electronic

(r): Pointer to a double value, which returns the calculated time in sec-

onds, e.g. period [s].

<iFlags>

 ME_IO_SINGLE_TIME_TO_TICKS_NO_FLAGS (default)

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_TIMER: not supported timer ID.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

meIOSingeTimeToTicks

 Description:

Converts a given period [s] into the number of „ticks“ to be passed to the

timer in the function meIOStreamConfig(). In dependency of parameter

<iTimer> of this function the return values of <piTicksLow> and

<piTicksHigh> can be passed to the parameter <iValue> of the function

meIOSingle().

Note: The conversion and the allowed value range depend on each sub-

device and their properties. If hardware limits are exceeded, an error mes-

sage is returned.

 Function Declaration:

int meIOSingleTimeToTicks(int iDevice, int iSubdevice, int iTimer, dou-

ble*pdTime, int *piTicksLow, int *piTicksHigh, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iTimer>

Ticks will be calculated in dependency of the subdevice type and the timer

specified here. The values <piTicksLow> and <piTicks- High> can be

passed to the parameter <iValue> of the function meIOSingle() next.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 129 Meilhaus Electronic

 ME_TIMER_FIO_TOTAL

The period is converted into ticks.

 ME_TIMER_FIO_FIRST_PHASE

The duration of the first phase of the period is converted into ticks.

<pdTime> (r/w)

(w): Pointer to a double value, passing the asked time in seconds, e.g. the

period [s] to be converted into ticks. If you pass invalid values a corre-

sponding error code will be returned.

(r): If the asked time cannot be realized exactly by the hardware the

value next lower to it will be returned here. The corresponding ticks are re-

turned in the parameters <piTicksLow> and <piTicksHigh>.

<piTicksLow> (r)

Pointer to an integer value, which contains the lower significant 32 bits

(31…0) of the calculated ticks. To be passed to the parameter <iValue>

of the function meIOSingle()

<piTicksHigh> (r)

Pointer to an integer value, which contains the higher significant 32 bits

(63…32) of the calculated ticks. This parameter is resevered for future en-

hancements.

<iFlags>

 ME_IO_SINGLE_TIME_TO_TICKS_NO_FLAGS (default)

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_TIMER: not supported timer ID.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 130 Meilhaus Electronic

meIOStreamConfig

 Description:

This function configures the hardware for a timer-controlled streaming op-

eration. See also chapter 3.4.2 „Stream Operation“ on page 51.

For analog and digital (bit-pattern output) streaming operations a channel-

list must be created, which contains an entry for each channel (channel in-

dex, measurement range…) of type meIOStreamConfig_t.

Additionally a trigger structure (meIOStreamTrigger_t) is required, which

defines numerous settings like start/stop conditions, timer settings, trigger

sources and trigger edges valid for the whole operation.

The operation is always started by the function meIOStreamStart() either

at once (software start) or in accordance with the start conditions defined

in the function meIOStreamConfig(). Stop the operation either according to

the stop conditions defined in the trigger structure or by calling the function

meIOStreamStop().

Note: Use the functions meIOStreamFrequencyToTicks() and meI-

OStreamFrequencyToTicks() (see page 169) to convert frequency resp.

period into ticks easily in order to pass them to the timers.

Please note appendix A5 on page 185 if you want to use the ME-MultiSig

system.

Tip: Initialize the trigger structure meIOStreamTrigger_t with „0“. In that

way you must only take care of the parameters which are required. At the

same time unused parameters are passed correctly and automatically.

 Function Declaration:

int meIOStreamConfig(int iDevice, int iSubdevice, meIOStreamCon-

fig_t*pConfigList, int iCount, meIOStreamTrigger_t *pTrigger, int

iFIFOIrqThreshold, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<pConfigList>

Pointer to a list of type meIOStreamConfig_t (see below).

<iCount>

Number of entries in <pConfigList>.

<pTrigger>

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 131 Meilhaus Electronic

Pointer to a structure of type meIOStreamTrigger_t (see below).

<iFIFOIrqThreshold>

Number of values to be read or written (reloaded) in one package. Re-

freshing the hardware buffer event is used for user – hardware synchroni-

zation. If not set hardware FIFO is read/loaded when the “HALF FIFO” flag

is detected.

<iFlags>

 ME_IO_STREAM_CONFIG_NO_FLAGS (default setting) Pointer to a

list with <iCount> entries of type meIOStreamConfig_t with the

configuration of the single channels

- Flag for continuous streaming operation. See chapter 3.4.2.6 on

page 67.

- MEphisto Scope: analog acquisition

 ME_IO_STREAM_CONFIG_BIT_PATTERN

- MEphisto Scope: Logic analyzer mode, parameter <iCount> will

be ignored.

- Special functions bit-pattern output and FIFO redirection (e.g. to

control the ME-MultiSig system). The DAC will be disconnected

from the FIFO. For details see chapter 3.4.3.2 on page 73 and ap-

pendix A3 on page 182.

Note: Also the digital ports should be configured to accept this redirection

(with ME_REF_DIO_FIFO_LOW or ME_REF_DIO_FIFO_HIGH).

 ME_IO_STREAM_CONFIG_WRAPAROUND

Flag for wraparound mode (periodical output). See chapter 3.4.2.6.4

„Wraparound Option“ on page 78.

 ME_IO_STREAM_CONFIG_SAMPLE_AND_HOLD

Enables “Sample&Hold” feature. For details see chapter 3.4.3.1

„Sample and Hold“ on page 72.

! For periodic bit-pattern output and for periodic DEMUX operation the

constant ME_IO_STREAM_CONFIG_WRAPAROUND must be ORed with

the constant ME_IO_STREAM_CONFIG_ BIT_PATTERN.

 Type Definition meIOStreamConfig

typedef struct meIOStreamConfig {

int iChannel;

int iStreamConfig;

int iRef;

int iFlags;

} meIOStreamConfig_t;

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 132 Meilhaus Electronic

<iChannel> (w)

Channel index. Depending on subdevice this can be analog inputs or out-

puts as well as a group of digital I/Os (e.g. in the operation mode bit-pat-

tern output).

<iStreamConfig> (w)

Choosing the range for the channel-list entry (see chapter 3.4.2 „Stream-

ing Operation“ on page 51 for details):

 Index for analog input range. Pass the index for the asked range re-

turned by the query functions.

 Index for analog output range. Pass the index for the asked range re-

turned by the query functions.

 On bit-pattern output pass ME_VALUE_NOT_USED.

<iRef> (w)

Defines the ground reference for analog inputs and outputs (see chapter

3.4.2 „Streaming Operation“ on page 51 for details):

 ME_REF_NONE

Default setting (e.g. for bit-pattern output)

 ME_REF_AI_GROUND

Single ended measurment with reference to ground of the AI section.

 ME_REF_AI_DIFFERENTIAL

Differential measurement without direct ground reference.

 ME_REF_AO_GROUND

Output with reference to ground of the AO section. Use this constant

for analog output.

 ME_REF_AO_DIFFERENTIAL

Differential measurement without direct ground reference.

<iFlags>

 ME_IO_STREAM_CONFIG_TYPE_NO_FLAGS (No flags available)

‘ Type Deinition meIOStreamTrigger

typedef struct meIOStreamTrigger {

int iAcqStartTrigType;

int iAcqStartTrigEdge;

int iAcqStartTrigChan;

int iAcqStartTicksLow;

int iAcqStartTicksHigh;

int iAcqStartArgs[10];

int iScanStartTrigType;

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 133 Meilhaus Electronic

int iScanStartTicksLow;

int iScanStartTicksHigh;

int iScanStartArgs[10];

int iConvStartTrigType;

int iConvStartTicksLow;

int iConvStartTicksHigh;

int iConvStartArgs[10];

int iScanStopTrigType;

int iScanStopCount;

int iScanStopArgs[10];

int iAcqStopTrigType;

int iAcqStopCount;

int iAcqStopArgs[10];

int iFlags;

} meIOStreamTrigger_t;

! Note the description of the trigger structure from page 58.

<iAcqStartTrigType>

This parameter defines the trigger type for start of the whole operation.

Depending on the used hardware you can choose from the following op-

tions:

 ME_TRIG_TYPE_SW

Start directly after calling the function. Pass „0“ in <iAcqStart-

TrigEdge>.

 ME_TRIG_TYPE_EXT_ANALOG

Start of the operation by an appropriate signal at the external analog

trigger input.

 ME_TRIG_TYPE_THRESHOLD

Start of the operation by a positive or negative deviation of a given

threshold at the analog trigger channel (see <iAcqStart- Args[0]>) .

 ME_TRIG_TYPE_WINDOW

Start of the operation when the signal at the analog trigger channel

leaves or enters the defined window (see <iAcqStartArgs[0]> and

<iAcqStartArgs[1]>).

 ME_TRIG_TYPE_EDGE

 Start of the operation by a falling or rising edge crossing a given level

at the trigger channel (see <iAcqStartArgs[0]>). E.g. to get a still

graph for repetitive AC signals.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 134 Meilhaus Electronic

 ME_TRIG_TYPE_SLOPE

Start of the operation if the signal at the trigger channel increases or

decreases faster as defined in <iAcqStartArgs[0]>.

 ME_TRIG_TYPE_EXT_DIGITAL

Start of the operation by an appropriate signal at the external digital

trigger input.

 ME_TRIG_TYPE_PATTERN

Start of the operation if the bit-pattern at the trigger port equals the ref-

erence bit-pattern defined in <iAcqStartTrigChan>. Pass „0“ in

<iAcqStartTrigEdge>.

<iAcqStartTrigEdge>

This parameter defines the edge to start a single conversion by an exter-

nal trigger signal. Depending on the trigger type and the used hardware

you can choose from different options:

 ME_TRIG_EDGE_NONE

If you have choosen the option software start (ME_TRIG_TYPE

_SW) in parameter <iAcqStartTrigType>.

 ME_TRIG_EDGE_RISING

Start by a rising edge

 ME_TRIG_EDGE_FALLING

Start by a falling edge

 ME_TRIG_EDGE_ANY

Start either by a rising or falling edge.

…in combination with ME_TRIG_TYPE_THRESHOLD in

<iAcqStartTrigType>:

 ME_TRIG_EDGE_ABOVE

Start if the level is above the trigger threshold.

 ME_TRIG_EDGE_BELOW

Start if the level is below the trigger threshold.

…in combination with ME_TRIG_TYPE_WINDOW in

<iAcqStartTrigType>:

 ME_TRIG_EDGE_ENTRY

Start if the level enters the defined window.

 ME_TRIG_EDGE_EXIT

Start if the level leaves the defined window.

<iAcqStartTrigChan>

With this parameter you can choose whether triggering should be done

separately for each channel (standard) or if a channel should be started

synchronously with other channels (e.g. for analog acquisition with sample

& hold option or synchronous start of several AO channels).

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 135 Meilhaus Electronic

 ME_TRIG_CHAN_DEFAULT Independent start (default).

 ME_TRIG_CHAN_SYNCHRONOUS

This channel will be included in the „synchronous start list“.

 MEphisto Scope:

- Selection of the analog trigger channel (0, 1) in the modes

„Threshold“, „Window“, „Edge“ and „Slope“.

- Passing the reference bit-pattern in trigger mode

„Pattern“.

- Else, pass „0“ here.

<iAcqStartTicksLow>

Offset time in number of ticks between „start“ of the measurement and the

first conversion. Note that the settling time of the AI section may not fall

below.

If supported by the hardware, combining of <iAcqStart-TicksLow> and

<iAcqStartTicksHigh> allows values of up to 64-bit width. It applies:

AcqStartTicks = (AcqStartTicksHigh <<32) ∨ AcqStartTicksLow.

For standard applications we recommend to set the offset time to the mini-

mum chan interval of the appropriate hardware (AcqStartTicks = min. Con-

vStartTicks).

<iAcqStartTicksHigh>

Higher significant part (bits 63…32) of the offset time, see <iAcq-Start-

TicksLow>. If you don´t want use this parameter, pass „0“ here.

<iAcqStartArgs[0]> (r/w)

 If ME_TRIG_TYPE_THRESHOLD was passed in <iAcq-Start-

TrigType> define the threshold value in [μV] here.

 If ME_TRIG_TYPE_WINDOW was passed in <iAcqStart-

TrigType> define the upper threshold value of the window in [μV]

here.

 If ME_TRIG_TYPE_EDGE was passed in <iAcqStartTrig-Type>

define the threshold value in [μV] here.

 If ME_TRIG_TYPE_SLOPE was passed in <iAcqStartTrig-Type>

define the slew rate in [μV/Sample].

(r): In the above cases, on returning from meIOStreamConfig() the ac-

tual trigger value used is returned here. For other values of <iAcq-

StartTrigType>, this parameter is not used and should be „0“.

<iAcqStartArgs[1]> (r/w)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 136 Meilhaus Electronic

 If ME_TRIG_TYPE_WINDOW was passed in <iAcqStart-

TrigType> define the lower threshold value of the window in [μV]

here.

(r): In the above cases, on returning from meIOStreamConfig() the actual

trigger value used is returned here. For other values of <iAcq-Start-

TrigType>, this parameter is not used and should be „0“.

<iScanStartTrigType>

This parameter defines the trigger type for start of a scan. Depending on

the used hardware you can choose from the following options:

 ME_TRIG_TYPE_TIMER

Start of the scan by the scan timer (e.g. channel-list processing).

 ME_TRIG_TYPE_FOLLOW

Start will be triggered automatically by conversion of the last channel-

list entry. The scan-timer will be disabled.

 ME_TRIG_TYPE_EXT_DIGITAL

Start of the scan by an appropriate trigger signal at the external digital

trigger input.

 ME_TRIG_TYPE_EXT_ANALOG

Start of the scan by an appropriate trigger signal at the external analog

trigger input.

<iScanStartTicksLow>

Time interval in ticks between the start of two consecutive scans (= chan-

nel-list processings). Usage is optional. If you don´t want to use the scan-

timer pass „0“ here.

Note the following dependency when calculating the scan interval (see

also the diagrams from page 58):

ScanStartTicks = (Number of channel-list entries x ConvStartTicks) +

„Pause“ [Ticks].

If supported by the hardware, combining of <iScanStart-TicksLow>

and <iScanStartTicksHigh> allows values of up to 64-bit width. It ap-

plies:

ScanStartTicks = (ScanStartTicksHigh <<32) ∨ ScanStartTicksLow.

<iScanStartTicksHigh>

Higher significant part (bits 63…32) of the scan-time, see

<iScanStartTicksLow>. If you don´t want to use this parameter, pass

„0“ here.

<iScanStartArgs[10]>

This parameter is reserved for future extensions.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 137 Meilhaus Electronic

<iConvStartTrigType>

This parameter defines the trigger type for start of a single conversion. De-

pending on the used hardware you can choose from the following options:

 ME_TRIG_TYPE_TIMER

Start of the conversion by the chan-timer.

 ME_TRIG_TYPE_EXT_DIGITAL

Start of the conversion by an appropriate trigger signal at the external

digital trigger input.

 ME_TRIG_TYPE_EXT_ANALOG

Start of the conversion by an appropriate trigger signal at the external

analog trigger input.

<iConvStartTicksLow>

Chan interval in number of ticks between two conversions (Sample resp.

output rate). The value range for the ME-4600 series is between 66

(42Hex) and 232-1 (FFFFFFFFHex) ticks.

If supported by the hardware, combining of <iConvStart-TicksLow>

and <iConvStartTicksHigh> allows values of up to 64-bit width. It ap-

plies:

ConvStartTicks = (ConvStartTicksHigh <<32) & ConvStartTicksLow

<iConvStartTicksHigh>

Higher significant part (bits 63…32) of the chan interval, see <iCon-

vStartTicksLow>. If you don´t want to use this parameter, pass „0“

here.

<iConvStartArgs[10]>

This parameter is reserved for future extensions.

<iScanStopTrigType>

This parameter defines the trigger type for ending the scan. Depending on

the used hardware you can choose from the following options:

 ME_TRIG_TYPE_NONE No trigger source given.

 ME_TRIG_TYPE_COUNT

Acquisition/output will be ended after the total number of conversion de-

fined in <iScanStopCount>.

! Use ME_TRIG_TYPE_COUNT only alternatively either in

<iScanStopTrigType> or <iAcqStopTrigType>.

<iScanStopCount>

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 138 Meilhaus Electronic

Total number of conversions after which the scans will be ended and at

the same time the measurement as a whole. If you want to run the meas-

urement for an undefined time, pass „0“ here.

! Use this parameter only alternatively either in

<iScanStopCount> or <iAcqStopCount>.

<iScanStopArgs[0]>

 MEphisto Scope in oscilloscope mode: trigger point in percent between

0 %…100 %. On returning from meIOStreamConfig() the actual trigger

point as a percentage is returned here. If the MEphisto Scope is used

in data-logging mode, then this parameter is not required and should

be „0“.

<iAcqStopTrigType>

On demand, this parameter defines the trigger type for ending the whole

operation. The following options are available:

 ME_TRIG_TYPE_NONE No trigger source defined.

 ME_TRIG_TYPE_COUNT

The operation will be ended after the number of scans (channel-list pro-

cessings) defined in <iAcqStopCount>.

! Use ME_TRIG_TYPE_COUNT only alternatively either in

<iScanStopTrigType> or <iAcqStopTrigType>.

 ME_TRIG_TYPE_FOLLOW

The measurement will be ended, as soon as

<iAcqStopCount>

Number of scans (channel-list processings) after which the complete oper-

ation should be ended. If you want to run the operation for an undefined

time, pass „0“ here.

! Use this parameter only alternatively either in

<iScanStopCount> or <iAcqStopCount>.

<iAcqStopArgs[10]>

This parameter is reserved for future extensions.

<iFlags>

 ME_IO_STREAM_TRIGGER_TYPE_NO_FLAGS (default) (no flags

available).

 Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 139 Meilhaus Electronic

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_CHANNEL:no channel available on subde-

vice.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_INVALID_REF: parameter <iRef> is not correct.

 ME_ERRNO_INVALID_ACQ_START_TRIG_CHAN: parameter.

<iAcqStartTrigChan> is not correct.

 ME_ERRNO_INVALID_ACQ_START_TRIG_EDGE: parameter

<iAcqStartTrigEdge> is not correct.

 ME_ERRNO_INVALID_STREAM_CONFIG: parameter <iSt-

reamConfig> is not correct.

 ME_ERRNO_TIMEOUT: timeout condition occurred.

 ME_ERRNO_PREVIOUS_CONFIG: subdevice was not configured for

required operation.

 ME_ERRNO_SUBDEVICE_BUSY: subdevice is performing other oper-

ation.

 ME_ERRNO_INVALID_FIFO_IRQ_THRESHOLD: parameter

<iFifoIrqThreshold> is not valid (too big).

ME_ERRNO_INVALID_CONFIG_LIST_COUNT: Wrong<iCount> of

configuration list.

 ME_ERRNO_INVALID_ACQ_START_TRIG_TYPE: parameter

<iAcqStartTrigType> is not correct.

 ME_ERRNO_INVALID_ACQ_START_ARG: interval <iAcq-Start-

Ticks> is not correct.

 ME_ERRNO_INVALID_SCAN_START_ARG: interval <iScan-

StartTicks> is not correct.

 ME_ERRNO_INVALID_CONV_START_ARG: interval <iConv-

StartTicks> is not correct.

 ME_ERRNO_INVALID_ACQ_STOP_TRIG_TYPE: parameter

<iConvStartTrigType> is not correct.

 ME_ERRNO_INVALID_SCAN_STOP_TRIG_TYPE: parameter

<iConvStartTrigType> is not correct.

 ME_ERRNO_INVALID_ACQ_STOP_ARG: parameter

<iAcqStopCount> is not correct.

 ME_ERRNO_INVALID_SCAN_STOP_ARG: parameter <iScan-

StopCount> is not correct.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 140 Meilhaus Electronic

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 141 Meilhaus Electronic

meIOStreamTimeTo Ticks

 Description:

Converts a given period [s] into the number of „ticks“ to be passed to the

timer in the function meIOStreamConfig().

Note: The conversion and the allowed value range depend on each sub-

device and their timers. If hardware limits are exceeded, always the limit

values are returned.

Tip: Passing „0“ in parameter <pdTime> of this function returns the mini-

mum frequency allowed. In dependency of parameter <iTimer> of this

function the return values of <piTicksLow> and <piTicks-High> can be

passed to the corresponding parameters <iAcqStart- Ticks…>,

<iConvStartTicks…> and <iScanStartTicks…> in the trigger struc-

ture of function meIOStreamConfig().

 Function Declaration

int meIOStreamTimeToTicks(int iDevice, int iSubdevice, int iTimer, double

*pdTime, int *piTicksLow, int *piTicksHigh, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iTimer>

Ticks will be calculated in dependency of the subdevice and the timer

specified here. The values <piTicksLow> and <piTicksHigh> are

passed in the trigger structure of the function meIOStreamConfig() (see

page 58ff).

 ME_TIMER_ACQ_START

<iAcqStartTicks> should be calculated for passing to the parame-

ter of the same name.

 ME_TIMER_SCAN_START

<iScanStartTicks> should be calculated for passing to the parame-

ter of the same name.

 ME_TIMER_CONV_START

<iConvStartTicks> should be calculated for passing to the parame-

ter of the same name.

<pdTime> (r/w)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 142 Meilhaus Electronic

(w): Pointer to a double value, passing the asked period [s] to be con-

verted into ticks. If you pass „0“ the minimum period will be returned.

(r): If the asked period cannot be realized exactly by the hardware the

period next lower to it will be returned as an approximation. The corre-

sponding ticks are returned in the parameters <piTicksLow> and

<piTicksHigh>.

<piTicksLow> (r)

Pointer to an integer value, which contains the lower significant 32 bits

(31…0) of the calculated ticks. Will be passed to the appropriate parame-

ter <…StartTicksLow> of the function meI-StreamConfig().

<piTicksHigh> (r)

Pointer to an integer value, which contains the higher significant 32 bits

(63…32) of the calculated ticks. Will be passed to the appropriate parame-

ter <…StartTicksHigh> of the function meIOStreamConfig().

<iFlags>

 ME_IO_TIME_TO_TICKS_NO_FLAGS (default) MEphisto Scope:

data-logging mode.

 ME_IO_TIME_TO_TICKS_MEPHISTO_SCOPE_ OSCILLOSCOPE

MEphisto Scope: oscilloscope mode.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_TIMER: not supported timer ID.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 143 Meilhaus Electronic

meIOStreamFrequencyToTicks

 Description:

Converts a given frequency [Hz] into the number of „ticks“ to be passed to

the timer in the function meIOStreamConfig().

Note: The conversion and the allowed value range depend on each sub-

device and their timers. If hardware limits are exceeded, always the limit

values are returned.

Tip: Passing „0“ in parameter <pdFrequency> of this function returns the

maximum frequency allowed. In dependency of parameter <iTimer> of

this function the return values of <piTicksLow> and <piTicks-High>

can be passed to the corresponding parameters <iAcqStart-

Ticks…>, <iConvStartTicks…> and <iScanStartTicks…> in the

trigger structure of function meIOStreamConfig().

 Function Declaration:

int meIOStreamFrequencyToTicks(int iDevice, int iSubdevice, int iTimer,

double *pdFrequency, int *piTicksLow, int *piTicksHigh, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iTimer>

Ticks will be calculated in dependency of the subdevice to which the speci-

fied timer belongs to. The values <piTicksLow> and <piTicksHigh>

are passed in the trigger structure of the function meIOStreamConfig()

(see page 58ff).

 ME_TIMER_ACQ_START

<iAcqStartTicks> should be calculated for passing to the parame-

ter of the same name.

 ME_TIMER_SCAN_START

<iScanStartTicks> should be calculated for passing to the parame-

ter of the same name.

 ME_TIMER_CONV_START

<iConvStartTicks> should be calculated for passing to the parame-

ter of the same name.

<pdFrequency> (r/w)

Pointer to a double value, passing the asked frequency [Hz] to be con-

verted into ticks. If you pass „0“ the maximum frequency will be returned. If

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 144 Meilhaus Electronic

the asked frequency cannot be realized exactly by the hardware the fre-

quency next higher to it will be returned as an approximation. The corre-

sponding ticks are returned in the parameters <piTicksLow> and

<piTicksHigh>.

<piTicksLow> (r)

Pointer to an integer value, which contains the lower significant 32 bits

(31…0) of the calculated ticks. Will be passed to the appropriate parame-

ter <…StartTicksLow> of the function meIOStreamConfig().

<piTicksHigh> (r)

Pointer to an integer value, which contains the higher significant 32 bits

(63…32) of the calculated ticks. Will be passed to the appropriate parame-

ter <…StartTicksHigh> of the function meIOStreamConfig().

<iFlags>

 ME_IO_FREQUENCY_TO_TICKS_NO_FLAGS (default) MEphisto

Scope: data-logging mode.

 ME_IO_FREQUENCY_TO_TICKS_MEPHISTO_SCOPE_ OSCILLO-

SCOPE.

MEphisto Scope: oscilloscope mode

 Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_TIMER: not supported timer ID.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 145 Meilhaus Electronic

meIOStreamStart

 Description:

Function starts streaming operations. Either immediately (software start) or

in accordance to the start conditions defined in the function meI-

OStreamConfig().

Ending a streaming operation is either done in accordance to the stop con-

ditions defined in the function meIOStreamConfig() or by the function meI-

OStreamStop().

If a streaming operation was not ended by the function meIOResetDe-

vice() (hardware configuration will be deleted) you can start a new opera-

tion by calling this function without configuring newly.

Note: Returning of the function depends on the <iStartmode> (BLOCK-

ING or NONBLOCKING) and trigger conditions defined in the function

meIOStreamConfig().

 Function Declaration:

int meIOStreamStart(meIOStreamStart_t *pStartList, int iCount, int iFlags);

<pStartList>

Pointer to a list of type meIOStreamStart_t, by which one or more

streaming operations can be started. The start is done immediately after

calling the function corresponding to the start conditions. If for one or more

list entries the <iStartMode> ME_START_MODE_BLOCKING and an

external trigger source (see meIOStreamConfig()) has been selected, the

function waits until the trigger signal occurs.

<iCount>

Number of entries in <pStartList>.

<iFlags>

 ME_IO_STREAM_START_NO_FLAGS

Default settings. Execute list up to the first error. Returned value corre-

sponds with the first non-zero <iErrno> field.

 ME_IO_STREAM_START_NONBLOCKING (Linux only) Execute

whole start list. When this flag is set execution is processed although

an error occured for some entries. The function returns

ME_ERRNO_SUCCESS when no global error was detected.

<iErrno> fields have to be checked.

 Type Definition meIOStreamStart

typedef struct meIOStreamStart {

int iDevice;

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 146 Meilhaus Electronic

int iSubdevice;

int iStartMode;

int iTimeOut;

int iFlags;

int iErrno;

} meIOStreamStart_t;

<iDevice> (w)

Index of the device to be accessed.

<iSubdevice> (w)

Index of the subdevice to be accessed.

<iStartMode> (w)

 ME_START_MODE_BLOCKING

When using an external trigger, the function waits until the proper trig-

ger signal occurs.

 ME_START_MODE_NONBLOCKING

Function returns immediately. Starting the hardware runs in back-

ground. <pStartList> is processed independently of external trigger

signals. Function returns ME_ERRNO_SUCCESS when no global er-

ror was detected.

<iTimeOut> (w)

Optionally, you can determine a time interval in milliseconds within the first

trigger pulse must occur in accordance to the conditions defined in func-

tion meIOStreamConfig(). Else the operation will be cancelled. If no exter-

nal trigger and no time-out value is used, pass „0“ here.

<iFlags> (w)

 ME_IO_STREAM_START_TYPE_NO_FLAGS

This constant is valid, if no other constant was choosen.

 ME_IO_STREAM_START_TYPE_TRIG_SYNCHRONOUS Synchro-

nous start by „synchronous start list“.

<iErrno>

If an error occurs, an error code will be returned.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 147 Meilhaus Electronic

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_TIMEOUT: timeout lower than 0.

 ME_ERRNO_INVALID_START_MODE: not supported start mode de-

tected.

 ME_ERRNO_PREVIOUS_CONFIG: subdevice is not configured cor-

rectly to proceed streaming operation.

 ME_STATUS_ERROR: previous operation ended with an error. Reset

has to be called to clear this state.

 ME_ERRNO_TIMEOUT: Timeout. Operation didn't start on time.

 ME_ERRNO_START_THREAD: creating callback thread failed. (Win-

dows only).

meIOStreamStop

 Description:

By this function an „infinite“ operation either can be cancelled at once or

stopped in a defined way (see parameter <iStopMode>). With that you

have the possibility to stop an output operation by the last entry in the

FIFO which is a known value.

If in the parameters <iAcqStopCount> resp. <iScanStopCount> of the

function meIOStreamConfig() stop conditions have been defined, calling

the function meIOStreamStop() is not necessary.

Configuration of the subdevice remains preserved (channel-list, timer…)

so that a restart with the function meIOStreamStart() is possible without

new configuration.

In opposite to this using the function meIOResetDevice() deletes the whole

configuration of the device.

 Function Declaration:

int meIOStreamStop(meIOStreamStop_t *pStopList, int iCount, int iFlags);

<pStopList>

Pointer to a list of type meIOStreamStop_t to end one or several in-

put/output operations. Stopping is done in accordance to parameter

<iStopMode>.

<iCount>

Number of entries in <pStopList>.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 148 Meilhaus Electronic

<iFlags>

 ME_IO_STREAM_STOP_NO_FLAGS

Default settings. Execute list up to the first error. Returned value corre-

sponds with the first non-zero <iErrno> field.

 ME_IO_STREAM_STOP_NONBLOCKING (Linux only) Execute whole

stop list one by one. When this flag is set execution is processed alt-

hough an error occured for some entries. The function returns

ME_ERRNO_SUCCESS when no global error was detected.

<iErrno> fields have to be checked.

 Type Definition meIOStreamStop

typedef struct meIOStreamStop {

int iDevice;

int iSubdevice;

int iStopMode;

int iFlags;

int iErrno;

} meIOStreamStop_t;

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iStopMode>

 ME_STOP_MODE_IMMEDIATE

Streaming operation is stopped at once. In case of an analog output 0V

is attached to the pin.

 ME_STOP_MODE_LAST_VALUE

- Output subdevice: operation is stopped on the last entry in the DA-

FIFO which is a defined value.

- Input subdevice: operation is stopped on the last entry from the

channel-list.

<iFlags>

 ME_IO_STREAM_STOP_TYPE_NO_FLAGS Default settings.

- Output subdevice: all buffers are cleared.

- Input subdevice: Hardware buffer is cleared. No synchronization at

all. In mode ME_STOP_MODE_ IMMEDIATE some data can be

lost.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 149 Meilhaus Electronic

 ME_IO_STREAM_STOP_TYPE_PRESERVE_BUFFERS (Linux only)

- Output subdevice: all buffers are preserved. Streaming can be con-

tinued.

- Input subdevice: Synchronization is done before hardware buffer is

cleared. No data are lost.

<iErrno>

If an error occurs, an error code will be returned.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_STOP_MODE: not supported stop mode de-

tected.

 ME_ERRNO_PREVIOUS_CONFIG: subdevice is not configured cor-

rectly to proceed streaming operation.

 ME_STATUS_ERROR: previous operation ended with an error. Reset

has to be called to clear this state.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 150 Meilhaus Electronic

meIOStreamRead

 Description:

With this function you can read values from the data buffer during a

streaming operation (timer-controlled acquisition).

The user has to allocate a data buffer, to which the measurement values

are written to. Using the execution mode „BLOCKING“ the function meI-

OStreamRead() returns when the last value has been read. In „NON-

BLOCKING“ mode the function returns at once with the available meas-

urement values.

For reading the data a callback function can also be used (for installation

of callback functions see function meIOStreamSetCallbacks() on page

186).

Note: For details please note the chapter „Streaming Operation“ from

page 51.

 Function Declaration

int meIOStreamRead(int iDevice, int iSubdevice, int iReadMode,

int*piValues, int *piCount, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iReadMode>

 ME_READ_MODE_BLOCKING

The function waits until the number of measurement values specified in

parameter <piCount> has been acquired.

Important: Call can block for ever!

 ME_READ_MODE_NONBLOCKING

The function returns immediately either with the number of measure-

ment values available when calling the function or with the number

specified in <piCount>. Each time the lower value is valid.

<piValues> (r)

Pointer to a data buffer (data stream) to be filled up. Use the function me-

UtilityDigitalToPhysical() for easy conversion into voltage values.

<piCount> (r/w)

(w): Size of the data buffer to be read in number of measurement values.

(r): The pointer returns the number of values actually read from the data

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 151 Meilhaus Electronic

buffer. If in BLOCKING mode the acquisition has been cancelled, the re-

turn value can also be less than the value passed.

 BLOCKING mode:

Number of values to be read – as a rule a multiple of the channel-list

length, but this is not necessary (see also meUtilityExtractValues() on

page 207).

 NONBLOCKING mode:

Number of values to be read – if you want to read a multiple of chan-

nel-list length use the constant ME_IO_STREAM_READ_ FRAMES in

the parameter <iFlags>.

<iFlags>

 ME_IO_STREAM_READ_NO_FLAGS Default settings.

 ME_IO_STREAM_READ_FRAMES

Reading a multiple of channel-list length in NONBLOCKING mode.

Example: If the channel-list has 5 entries and in parameter <piCount>

the value „14“ has been passed:

- ME_IO_STREAM_READ_NO_FLAGS: 14 values are returned.

- ME_IO_STREAM_READ_FRAMES: 10 values are returned.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_VALUE_COUNT: <piCount> is lower than

zero.

 ME_ERRNO_INVALID_READ_MODE: not supported read mode de-

tected.

 ME_ERRNO_SUBDEVICE_NOT_RUNNING: buffer is empty and sub-

device is not running a streaming operation.

 ME_ERRNO_HARDWARE_FIFO_OVERFLOW: error during acquisi-

tion. Reading data from FIFO was too slow.

 ME_ERRNO_RING_BUFFER_OVERFLOW: no place in buffer for new

data. Reading data from buffer was too slow.

meIOStreamWrite

 Description:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 152 Meilhaus Electronic

This function is for writing data to a buffer for timer-controlled analog resp.

digital output in the operation mode „streaming“. Allocate for every subde-

vice to be used a data buffer of defined size for the values to be output.

In dependency of parameter <iFlags> of the function meIO- StreamCon-

fig() you can choose between the following options:

a. With the constant ME_IO_STREAM_CONFIG_NO_FLAGS you can

output any analog signals continuously. The data buffer must be reloaded

periodically with new values which can also be changed after starting the

output operation. When loading for the first time use the option

ME_WRITE_MODE_PRELOAD in the parameter <iWriteMo-de>.

b. The constant ME_IO_STREAM_CONFIG_BIT_PATTERN is used for

bit-pattern output and timer-control of the ME-MultiSig system if it should

not be registered with the ME-iDC (in the pipeline). By this constant you

connect the timer-control with the digital ports of the ME-4680. See also

parameter <iSingleConfig> and <iRef> of the function meIOSingle-

Config().

c. By the constant ME_IO_STREAM_CONFIG_WRAPAROUND you can

output analog signals as well as digital bit patterns periodically. The data

buffer must be loaded once with the values to be output. Therefore use the

option ME_WRITE_MODE_PRELOAD in the parameter <iWriteMode>.

If the number of values in the data buffer does not exceed the FIFO size

(depends on hardware) the output operation is running on firmware level.

I.e. it is no additional load for the host computer (ME-4680: 4096 values,

ME-6100/6300: 8192 values). For periodic bit-pattern output and for peri-

odic DEMUX operation this constant must be ORed with the constant

ME_IO_STREAM_CONFIG_BIT_PATTERN.

Note: AO channels with FIFO, which are suitable for timer-controlled out-

put (ME_SUBTYPE_STREAMING) have to be accessed as independent

subdevices.

See also chapter 3.4.2 „Streaming Operation“ from page 51

 Function Declaration:

int meIOStreamWrite(int iDevice, int iSubdevice, int iWriteMode,

int*piValues, int *piCount, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iWriteMode>

 ME_WRITE_MODE_BLOCKING

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 153 Meilhaus Electronic

The function waits until the number of values specified in parame-

ter.<piCount> can be written to the internal buffer. Important: Call can

block for ever!

 ME_WRITE_MODE_NONBLOCKING

With this option the function writes as many values to the internal buffer

as there is space at the moment the function was called (max. number

specified in <piCount>).

 ME_WRITE_MODE_PRELOAD

Pre-loading the data buffer for the first time. Data will be written directly

to the hardware buffer. If there are more data as there is space in the

FIFO the rest is stored in an internal buffer.

Note: This is non-blocking writing.

<piValues> (w)

Pointer to a data buffer (data stream) with the values resp. bit patterns to

be output. Use the function meUtilityPhysicalToDigital for easy conversion

of physical values (e.g. voltage) into digital values.

<piCount> (r/w)

(w): Number of values to be loaded into the data buffer.

(r): The pointer returns the number of values which could be written into

the data buffer actually. The number will never be greater, but can also be

less, if there is less memory for the number of values passed.

<iFlags>

 ME_IO_STREAM_WRITE_NO_FLAGS Default settings – no flags

available.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_VALUE_COUNT: <piCount> is lower than

zero.

Note: When <piCount> is set to zero ME_ERRNO_SUCCESS is re-

turned.

 ME_ERRNO_INVALID_WRITE_MODE: not supported write mode de-

tected.

 ME_ERRNO_PREVIOUS_CONFIG: device is configured to work in

single mode.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 154 Meilhaus Electronic

 ME_ERRNO_HARDWARE_FIFO_UNDERFLOW:

- General: error during streaming. Writing data to FIFO was too slow.

- Hardware wraparound: More data than space in FIFO.

 ME_ERRNO_RING_BUFFER_UNDERFLOW: data buffer is empty.

Writing to data buffer was too slow.

 ME_ERRNO_SUBDEVICE_NOT_RUNNING: The internal hardware

state machine is stopped but logical status show that should be work-

ing. No data in FIFO but software buffer is not empty.

meIOStreamStatus

 Description:

Checking the status of streaming operation. Depending on input or output

operation this function is used to check whether all measurement values

have been acquired or whether an output operation is still running.

With the parameter <iWait> you can control, whether the function should

return the current state at once, or whether you want to wait until the input

resp. output operation has been ended.

 Function Declaration:

int meIOStreamStatus(int iDevice, int iSubdevice, int iWait, int *piStatus,

int *piCount, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iWait>

Behaviour of return of this function:

 ME_WAIT_NONE

 Check current status. Function returns the current state of operation

immediately in parameter <piStatus>.

 ME_WAIT_IDLE

In case of an output operation the function waits until all values have

been output. The function returns with ME_STATUS_IDLE in parame-

ter <piStatus>.

Important: Call can block for ever!

 ME_WAIT_BUSY (Linux only)

The function blocks while the status is ME_STATUS_BUSY

Important: Call can block for ever!

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 155 Meilhaus Electronic

<piStatus> (r)

Pointer which returns the current state of operation of the specified subde-

vice:

 ME_STATUS_IDLE

Streaming operation has finished.

 ME_STATUS_BUSY

Streaming operation is still running.

 ME_STATUS_ERROR

Error occured, e.g. data stream was interrupted.

<piCount> (r)

- Input subdevice: Number of values which can be read.

- Output subdevice: Free memory in the output buffer (in number of

values).

<iFlags>

 ME_IO_STREAM_STATUS_NO_FLAGS Default settings – no flags

available.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_WAIT: not supported wait mode detected.

meIOStreamNewValues

 Description:

Checking the status of streaming operation. Function returns when:

- Input subdevice: there are some values in the buffer.

- Output subdevice: there is empty space in the buffer.

With the parameter <iTimeOut> you can avoid that the function blocks

for ever.

 Function Declaration

int meIOStreamNewValues(int iDevice, int iSubdevice, int iTimeOut,

int*piCount, int iFlags);

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 156 Meilhaus Electronic

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iTimeOut>

Time-out value in milliseconds. The function returns within a certain time if

the buffer status could not be determined. If you donot want to use a time-

out value, pass „0“.

<piCount> (r)

- Input subdevice: Free memory in buffer (number of values).

- Output subdevice: Free memory in buffer (number of values).

<iFlags>

 ME_IO_STREAM_NEW_VALUES_NO_FLAGS Default settings – no

flags available.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_TIMEOUT: Timeout.

meIOStreamSetCallbacks

Description:

background for a event on a streaming subdevice. The functions can be

called in dependency of the data stream:

- <pStartCB> – executed when streaming starts.

- <pNewValuesCB> – executed when data can be read

(input subdevice) or written (output subdevice)

- <pEndCB> – executed when streaming stops.

Note: To deinstall/cancel all registered callback instances for the selected

subdevice call meIOStreamSetCallbacks() with all callback pointers

(<pStartCB>,<pNewValuesCB> and <pEndCB>) set to NULL. It is the

same as calling the function meIOStreamStop().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 157 Meilhaus Electronic

 Function Declaration

int meIOStreamSetCallbacks(int iDevice, int iSubdevice, meIOStreamCB_t

pStartCB, void *pStartCBContext, meIOStreamCB_t pNewValuesCB, void

*pNewValuesCBContext, meIOStreamCB_t pEndCB, void *pEndCBCon-

text, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<pStartCB>

Pointer to an user-defined function. This function is called when streaming

operation starts. If the function exits with a return value different than

ME_ERNNO_SUCCESS (0x00) streaming is instantly stopped (meI-

OStreamStop() is executed).

<pStartCBContext>

User-defined pointer passed to start callback function. This parameter is

optional. If you don´t want to use this functionality pass NULL.

<pNewValuesCB>

Pointer to an user-defined function. This function is called when the buffer

status is changing. If the function exits with a return value different than

ME_ERNNO_SUCCESS (0x00) streaming is instantly stopped (meI-

OStreamStop() is executed.

<pNewValuesCBContext>

User-defined pointer passed to new values callback function. This parame-

ter is optional. If you donot want to use this functionality pass NULL.

<pEndCB>

Pointer to a user-defined function. This function is called when streaming

operation stops.

<pEndCBContext>

User-defined pointer passed to stop callback function. This parameter is

optional. If you don´t want to use this functionality pass NULL.

<iFlags>

 ME_IO_STREAM_SET_CALLBACKS_NO_FLAGS (no flags available)

‘ Type Definition meIOStreamCB_t

typedef int (*meIOStreamCB_t)(

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 158 Meilhaus Electronic

int iDevice,

int iSubdevice,

int iCount,

void *pvContext,

int iErrorCode);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iCount>

- Input subdevice: number of values, which can be read.

- Output subdevice: Free memory in the output buffer.

<pvContext> (w)

User-defined pointer to exactly that value, which was passed to this func-

tion in the parameter <p…CBContext>. If you don’t want to use this pa-

rameter pass NULL.

<iErrorCode>

If an error occurs an error code will be returned.

Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: no subdevice mapped to re-

quested ID.

 ME_ERRNO_LOCKED: subdevice is protected.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

 ME_ERRNO_START_THREAD: creating callback thread failed. (Li-nux

only).

4.2.4 Auxiliary Functions

meOpen

 Description:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 159 Meilhaus Electronic

- This function initializes the function library:

- Reserve memory.

- Set internal variables.

- Establish connection to driver(s).

- Map detected resources to logical structures.

Else, there is no access to the ME-iDS possible.

 Function Declaration:

int meOpen(int iFlags);

<iFlags>

 ME_OPEN_NO_FLAGS

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_OPEN: ME-iDS cannot be properly opened. Usually

driver is not loaded.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

meCloser

 Description:

This function closes the connection to the function library:

- Free used memory.

- Disconnect from driver.

 Function Declaration:

int meClose(int iFlags);

<iFlags>

 ME_CLOSE_NO_FLAGS

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_CLOSE: ME-iDS cannot be properly closed.

 ME_ERRNO_INVALID_FLAGS: some of passed flags are not sup-

ported.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 160 Meilhaus Electronic

meLockDriver

 Description:

The entire driver system (ME-iDS) will be locked resp. unlocked for access

to other threads. If another thread wants to access to the driver system an

error message is returned.

 Function Declaration:

int meLockDriver(int iLock, int iFlags);

<iLock>

 ME_LOCK_SET

The driver system will be locked for other threads.

 ME_LOCK_RELEASE

The locked driver system will be released.

 ME_LOCK_CHECK

Check the current locking status.

<iFlags>

 ME_LOCK_DRIVER_NO_FLAGS

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_LOCKED: some resources are locked by other applica-

tion/task.

 ME_ERRNO_USED: some resources are currently in use therefore

lock cannot be set.

 ME_ERRNO_INVALID_FLAGS: passed flags are not supported.

meLockDevice

 Description:

A device will be locked resp. unlocked as a whole. If another thread wants

to access to a locked device an error message is returned.

 Function Declaration:

int meLockDevice(int iDevice, int iLock, int iFlags);

<iDevice>

Index of the device to be accessed.

<iLock>

 ME_LOCK_SET

The device will be locked for access to other threads.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 161 Meilhaus Electronic

 ME_LOCK_RELEASE

The locked device will be released.

 ME_LOCK_CHECK

Check the current locking status.

<iFlags>

 ME_LOCK_DEVICE_NO_FLAGS

 Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_LOCKED: some resources are locked by other applica-

tion/task.

 ME_ERRNO_USED: some resources are currently in use therefore

lock cannot be set.

 ME_ERRNO_INVALID_FLAGS: passed flags are not supported.

meLockSubdevice

 Description:

A subdevice will be locked resp. released. If another thread wants to ac-

cess to a locked subdevice an error message is returned.

Function Declaration:

int meLockSubdevice(int iDevice, int iSubdevice, int iLock, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice>

Index of the subdevice to be accessed.

<iLock>

 ME_LOCK_SET

The subdevice will be locked for other threads.

 ME_LOCK_RELEASE

The locked subdevice will be released.

 ME_LOCK_CHECK

Check the current locking status.

<iFlags>

 ME_LOCK_SUBDEVICE_NO_FLAGS

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 162 Meilhaus Electronic

 ME_ERRNO_LOCKED: resource is locked by other application/task.

 ME_ERRNO_USED: resource is currently in use therefore lock cannot

be set.

 ME_ERRNO_INVALID_FLAGS: passed flags are not supported.

meErrorGetLast

 Description:

This function returns the last error code.

Function Declaration:

int meErrorGetLast(int *piErrorCode, int iFlags);

<piErrorCode>

Pointer to the error code.

<iFlags>

 ME_NO_FLAGS: Default setting.

 ME_ERRNO_CLEAR_FLAGS: Do not report this error again.

 Return Value:

• ME_ERRNO_SUCCESS: Function returned successfully.

• ME_ERRNO_INVALID_FLAGS: passed flags are not supported.

• ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meErrorGetLastMessage

 Description:

This function returns the last error caused by an API function. A corre-

sponding error text can be displayed.

 Function Declaration:

int meErrorGetLastMessage(char *pcErrorMsg, int iCount);

<pcErrorMsg>

Pointer to the error description text.

<iCount>

Buffer size in bytes for the error description text. Use the constant ME_ER-

ROR_MSG_MAX_COUNT.

 Return Value:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 163 Meilhaus Electronic

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_INVALID_ERROR_MSG_COUNT: reserved buffer is too

small for description.

Note: This error can be ignored in some cases. Whole available space

will be filled with description string.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meErrorGetMessage

 Description:

This function converts an error code returned from an API function to plain

text.

Function Declaration:

int meErrorGetMessage(int iErrorCode, char *pcErrorMsg, int iCount)

<iErrorCode>

The error code from the API function.

<pcErrorMsg>

Pointer to the error description text.

<iCount>

Buffer size in bytes for the error description text. Use the constant ME_ER-

ROR_MSG_MAX_COUNT.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_INVALID_ERROR_NUMBER: provided error code is not

valid in ME-iDS.

 ME_ERRNO_INVALID_ERROR_MSG_COUNT: reserved buffer is too

small for description.

Note: This error can be in some cases ignored. Whole available space

will be filled with description string.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 164 Meilhaus Electronic

meErrorSetDefaultProc

 Description:

This function can be used to install a standard (predefined) global error

logging routine for the entire ME-iDS. This global error routine is automati-

cally called if any function call returns an error. The following info are re-

turned:

- Name of the function which caused the error.

- Short error description.

- Error code.

Note: Only one global error routine can be installed (…ErrorSetDefault-

Proc or …ErrorSetUserProc).

Function Declaration:

int meErrorSetDefaultProc(int iSwitch);

<iSwitch>

 ME_SWITCH_ENABLE

Installing the predefined error routine for global error logging.

 ME_SWITCH_DISABLE

Uninstall the predefined error routine.

 Return Value:

• ME_ERRNO_SUCCESS: Function returned successfully.

• ME_ERRNO_INVALID_SWITCH: passed action code is not sup-

ported.

meErrorSetUserProc

 Description:

This function is used to install a global user-defined error logging routine

for the ME-iDS. This function is automatically called if any function call re-

turns an error. The following info are returned:

- Name of the function which caused the error.

- Error code.

Use the function …ErrorGetMessage() to assign an error description to the

error code.

Note: Only one global error routine can be installed (…ErrorSetDefault-

Proc or …ErrorSetUserProc).

Function Declaration:

int meErrorSetUserProc(meErrorCB_t pErrorProc);

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 165 Meilhaus Electronic

<pErrorProc>

Pointer to a user-defined error logging routine. The name of the faulty

function and the error code will be passed to the callback function installed

there. Passing a NULL will uninstall a previously installed error routine.

 Type Definition meErrorCB_t

typedef int (*meErrorCB_t)

(char *pcFunctionName,

int iErrorCode);

<pcFunctionName>

String with the name of the function where the error was detected.

<iErrorCode>

Error code.

Return Value

No error possible.

meUtilityDigitalToPhysical

 Description:

Auxiliary function for easy conversion of the standardized digital values

into the appropriate physical unit (voltage, current or temperature). Using

this function is optional.

If you read data from an input subdevice in streaming mode, you should

apply the function meUtiltiyExtractValues() to the array of values before

calling this function. Only that way is itguarenteed that different gain fac-

tors and the usage of different plug-on modules in combination with the

ME-MultiSig system can be taken into account when calculating.

The temperature for:

…RTDs is calculated in accordance to DIN EN 60751

…Thermocouples is calculated in accordance to DIN EN 60584.

If you want to apply the function to a whole array of values we recommend

the function meUtilityDigitalToPhysicalV().

Note: The parameters <dMin> and <dMax> must correspond with the lim-

its of the measurement range choosen in the functions meIOSingleCon-

fig() resp. meIOStreamConfig().

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 166 Meilhaus Electronic

The parameters <dMin>, <dMax> and <pdPhysical> must be given al-

ways in the same decimal power of the respective base unit (e.g. either

„mV“ or „V“).

The physical unit is not relevant for calculation.

Function Declaration:

int meUtilityDigitalToPhysical(double dMin, double dMax, int iMaxData, int

iData, int iModuleType, double dRefValue, double *pdPhysical);

<dMin>

The lower limit of the range (from meQueryRangeInfo()), e.g. -10[V]. See

also note above.

<dMax>

The upper limit of the range (from meQueryRangeInfo()), e.g. +10[V]. See

also note above.

<iMaxData>

The max. resolution of the range (from meQueryRangeInfo()), e.g. 65535

(0xFFFF) at 16-bit resolution.

<iData>

Digital value (0…65535) to be converted.

<iModuleType>

Note: Support for ME-MultiSig is in preparation. Please contact our sales

team for further details.

If you are using the ME-MultiSig system in combination with a plug-on

module for signal conditioning choose the module type here. In parameter

<dMin> pass „-10“, in parameter <dMax> „+10“ and in parameter

<iMaxData> „65535“. This is important for a correct calculation of the

measurement value. If for the current calculation no plug-on module must

be taken into account, pass the constant:

 ME_MODULE_TYPE_MULTISIG_NONE

No plug-on module used (standard).

 ME_MODULE_TYPE_MULTISIG_DIFF16_10 V

Plug-on module ME-Diff16 with input range 10 V.

 ME_MODULE_TYPE_MULTISIG_DIFF16_20V Plug-on module ME-

Diff16 with input range 20 V.

 ME_MODULE_TYPE_MULTISIG_DIFF16_50 V Plug-on module ME-

Diff16 with input range 50 V.

 ME_MODULE_TYPE_MULTISIG_CURRENT16_0_20 MA

Plug-on module ME-Current16 with input range 0…20 mA.

 ME_MODULE_TYPE_MULTISIG_RTD8_PT100

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 167 Meilhaus Electronic

Plug-on module ME-RTD8 for RTDs of type Pt100 (0,4 Ω/K).

 ME_MODULE_TYPE_MULTISIG_RTD8_PT500

Plug-on module ME-RTD8 for RTDs of type Pt500 (2,0 Ω/K).

 ME_MODULE_TYPE_MULTISIG_RTD8_PT1000

Plug-on module ME-RTD8 for RTDs of type Pt1000 (4,0 Ω/K).

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_B

Plug-on module ME-TE8, channel with thermocouple type B.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_E

Plug-on module ME-TE8, channel with thermocouple type E.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_J

Plug-on module ME-TE8, channel with thermocouple type J.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_K

Plug-on module ME-TE8, channel with thermocouple type K.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_N

Plug-on module ME-TE8, channel with thermocouple type N.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_R

Plug-on module ME-TE8, channel with thermocouple type R.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_S

Plug-on module ME-TE8, channel with thermocouple type S.

 ME_MODULE_TYPE_MULTISIG_TE8_TYPE_T

 Plug-on module ME-TE8, channel with thermocouple type T.

 ME_MODULE_TYPE_MULTISIG_TE8_TEMP_SENSOR

 Plug-on module ME-TE8, channel for cold junction compensation at the

terminal of the module.

 ME_MODULE_TYPE_MULTISIG_BA4_DMS120

Plug-on module ME-BA4, channel with 120 Ω nominal strain gauge re-

sistance.

 ME_MODULE_TYPE_MULTISIG_BA4_DMS350

Plug-on module ME-BA4, channel with 350 Ω nominal strain gauge re-

sistance.

 ME_MODULE_TYPE_MULTISIG_BA4_DMS1000

Plug-on module ME-BA4, channel with 1 kΩ nominal strain gauge re-

sistance.

<dRefValue>

 Default setting: ME_VALUE_NOT_USED.

 If you have choosen a RTD module in parameter <iModuleType>:

For exact calculation of temperature you must pass the constant meas-

urement current IM in ampere [A]. It must be measured before with a

high-precision amperemeter (see manual ME-MultiSig system).

 If you want to ignore the measurement tolerance the function calcu-

lates with a typical constant measurement current of IM = 500 x 10-6 A.

In that case pass the constant:

ME_REFVALUE_MULTISIG_I_MEASURED_DEFAULT.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 168 Meilhaus Electronic

 If you have choosen a thermo-couple module in parameter <iModule-

Type>:

Because the calculation refers to a cold-junction temperature of 0 °C

you must measure the temperature at the connector STM1 of the plug-

on module with the integrated sensor before you start the series of

measurements (see parameter <iModuleType>). Next, the deter-

mined value is passed by this parameter (in °C). Parameter returns a

pointer to the compensated temperature value in °C.

<pdPhysical>

Result in the corresponding physical unit [V], [A], [°C].

 Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_VALUE_OUT_OF_RANGE: passed value is lower than

“0” or bigger than <iMaxData>.

 ME_ERRNO_INVALID_MIN_MAX: passed <iMaxData> is not valid.

 ME_ERRNO_INVALID_MODULE_TYPE: passed moduletype is not

supported.

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meUtilityDigitalToPhysicalIV

 Description:

In opposite to the function meUtilityDigitalToPhysical() this function can be

applied to a whole array of values. For it the parameter <iCount> was

added to the function declaration. Else the description of the function me-

UtilityDigitalToPhysical() is valid in an analogue way.

 Function Declaration:

int meUtilityDigitalToPhysicalV(double dMin, double dMax, int iMaxData,

int *piDataBuffer, int iCount, int iModuleType, double dRefValue, double

*pdPhysicalBuffer);

<dMin>

The lower limit of the range (from meQueryRangeInfo()).

<dMax>

The upper limit of the range (from meQueryRangeInfo()).

<iMaxData>

The max. resolution of the range (from meQueryRangeInfo()).

<piDataBuffer> (w)

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 169 Meilhaus Electronic

Pointer to an array of digital values to be converted.

<iCount>

Number of values in the array.

<iModuleType>

See function meUtilityDigitalToPhysical().

<dRefValue>

See function meUtilityDigitalToPhysical().

<pdPhysicalBuffer> (r)

Pointer to an array for the results in the appropriate physical unit [V], [A],

[°C]. Has to be able to store <iCount> values.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_VALUE_OUT_OF_RANGE: passed value is lower than

“0” or bigger than <iMaxData>.

 ME_ERRNO_INVALID_MIN_MAX: <iMaxData> not valid.

 ME_ERRNO_INVALID_MODULE_TYPE: passed module type is not

supported.

 • ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 170 Meilhaus Electronic

meUtilityPhysicalToDigital

 Description:

Auxiliary function allows simple conversion of values (voltage or current) to

be output in standardized digital values which are appropriate for the con-

verter. Using this function is optional.

If you want to apply the function to a whole array of values we recommend

the function meUtilityPhysicalToDigitalV().

Note: The parameters <dMin> and <dMax> must correspond with the lim-

its of the measurement range choosen in the functions meIOSingleCon-

fig() resp. meIOStreamConfig().

The parameters <dMin>, <dMax> and <dPhysical> must be given al-

ways in the same decimal power of the respective base unit (e.g. either

„mV“ or „V“).

The physical unit is not relevant for calculation.

Function Declaration:

int meUtilityPhysicalToDigital(double dMin, double dMax, int iMaxData,

double dPhysical, int *piData);

<dMin>

The lower limit of the range (from meQueryRangeInfo()), e.g. -10[V]. See

also note above.

<dMax>

The upper limit of the range (from meQueryRangeInfo()), e.g. +10[V]. See

also note above.

<iMaxData>

The maximum resolution of the range (from meQueryRangeInfo()), e.g.

65535 (0xFFFF) at 16-bit resolution.

<dPhysical>

Voltage or current value to be converted, e.g. +0,75[V].

<piData>

Result as a digital value to be output.

Return Value

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_VALUE_OUT_OF_RANGE: passed value is lower than

<dMin> or bigger than <dMax>.

 ME_ERRNO_INVALID_MIN_MAX: <iMaxData> not valid.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 171 Meilhaus Electronic

 ME_ERRNO_INVALID_POINTER: passed pointer is NULL.

meUtilityPhysicalToDigitalV

 Description:

In opposite to the function meUtilityPhysicalToDigital() this function can be

applied to a whole array of values. For it the parameter <iCount> was

added to the function declaration. Else the description of the function me-

UtilityPhysicalToDigital() is valid in an analogue way.

Function Declaration:

int meUtilityPhysicalToDigitalV(double dMin, double dMax, int iMaxData,

double *pdPhysicalBuffer, int iCount, int *piDataBuffer);

<dMin>

The lower limit of the range (from meQueryRangeInfo()).

<dMax>

The upper limit of the range (from meQueryRangeInfo()).

<iMaxData>

The maximum resolution of the range (from meQueryRangeInfo()).

<pdPhysicalBuffer> (w)

Pointer to an array with the voltage or current values to be converted, e.g.

+0,75 [V].

<iCount>

Number of values in the array.

<piDataBuffer> (r)

Pointer to an array with the digital values to be output. Has to be able to

store <iCount> values.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_VALUE_OUT_OF_RANGE: passed value is lower than

<dMin> or bigger than <dMax>.

 ME_ERRNO_INVALID_MIN_MAX: <iMaxData> not valid.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

meUtilityExtractValues

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 172 Meilhaus Electronic

 Description:

Auxiliary function extracts the values of the specified channel from an ar-

ray of values, allocated by the function meIOStreamRead() taking into ac-

count the channel-list. To extract the channels for several channels the

function must be called separately.

Note: If channel is not on list the function returns ME_ERRNO_ SUC-

CESS and <piChanBufferCount> is set to “0”.

Function Declaration:

int meUtilityExtractValues(int iChannel, int *piAIBuffer, int iAIBufferCount,

meIOStreamConfig_t *pConfigList, int iConfigListCount, int *piChanBuffer,

int *piChanBufferCount);

<iChannel>

Channel index whose values should be extracted.

<piAIBuffer> (w)

Pointer to the data buffer allocated by the function meIOStreamRead().

<iAIBufferCount>

Number of measurement values in data buffer <piAIBuffer>.

<pConfigList> (w)

Pointer to the channel-list, which was passed to the function meI-

OStreamConfig().

<iConfigListCount>

Number of channel-list entries in <pConfigList>.

<piChanBuffer> (r)

Pointer to an array with the extracted values of the specified channel.

<piChanBufferCount> (r/w)

(w): Passing the size of the array <piChanBuffer> in number of val-

ues.

(r): The function returns the number values actually written to

<piChanBuffer>.

 Type Definition meIOStreamConfig_t

Type definition see function meIOStreamConfig() from page 156.

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_INVALID_POINTER: passed pointers are NULL.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 173 Meilhaus Electronic

meUtilityPWMStart

Description:

This auxiliary function configures the counter device 8254 (ME_SUB-

TYPE_CTR_8254) for the operation mode „pulse width modulation“

(PWM) and starts the operation. A further usage of the counters 0…2 is

not possible in this operation mode. The signal is available at OUT_2 of

the specified counter device. Depending on device type the base clock

(max.10 MHz) must be provided externally or (if supported by the hard-

ware) an on-board crystal oszillator can be used. Counter 0 is used as a

prescaler. The frequency of the output signal is max. 50 kHz and can be

calculated as follows:

The duty cycle can be set between 1…99 % in steps of 1 % (see diagram

32 on page 181).

Note: Using this function is only meaningful in combination with the exter-

nal switching shown in diagram 31 on page 217.

 Funktion Declaration:

int meUtilityPWMStart(int iDevice, int iSubdevice1, int iSubdevice2, int

iSubdevice3, int iRef, int iPrescaler, int iDutyCycle, int iFlags);

<iDevice>

Index of the device to be accessed.

<iSubdevice1>

Index of the subdevice counter 0 (used as prescaler).

<iSubdevice2>

Index of the subdevice counter 1.

<iSubdevice3>

Index of the subdevice counter 2.

<iRef>

Defines the clock source for counter 0 (CLK_0):

 ME_REF_CTR_INTERNAL_1 MHZ

Clock source is the internal 1 MHz crystal oszillator.

 ME_REF_CTR_INTERNAL_10 MHZ

fOUT_2 =

Base clock
(with <iPrescaler> = 2…(216– 1))

 <iPrescaler> ⋅ 100

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 174 Meilhaus Electronic

Clock source is the internal 10 MHz crystal oszillator.

 ME_REF_CTR_EXTERNAL

Clock source is an external oszillator.

<iPrescaler>

Value for the prescaler (counter 0) in the range 2…65535.

<iDutyCycle>

Duty cycle of the output signal from 1 % –99 % adjustable in steps of 1 %.

<iFlags>

Flag for extended options:

 ME_PWM_START_NO_FLAGS: default settings

 ME_PWM_START_CONNECT_INTERNAL

If supported by hardware (e.g. ME-1400 series), connect OUT_1 with

GATE_2 internally. This reduces the number of external connections.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_INVALID_FLAGS: not supported flag detected.

 ME_ERRNO_INVALID_REF: used signal source not available.

 ME_ERRNO_INVALID_DUTY_CYCLE: value outside of supported

range.

 ME_ERRNO_NOT_SUPPORTED:

- used subdevice is not a counter.

- internal connection can not be done.

meUtilityPWMStop

 Description:

With this function a PWM operation started by the function meUtili-

tyPWMStart() is ended.

Function Declaration:

int meUtilityPWMStop(int iDevice, int iSubdevice1);

<iDevice>

Index of the device to be accessed.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 175 Meilhaus Electronic

<iSubdevice1>

Index of the subdevice counter 0 used as prescaler.

Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_NOT_SUPPORTED: used subdevice is no counter.

meUtilityPWMRestart

Description:

Auxiliary function to restart a PWM operation stopped by meUtilityPWM-

Stop(). The prescaler can be loaded with a new value to set another fre-

quency. The duty cycle cannot be changed here.

Note: Using this function is only meaningful in combination with the exter-

nal switching shown in diagram 31 on page 180. The operation starts

where it was stopped. No reset!

Function Declaration:

int meUtilityPWMRestart(int iDevice, int iSubdevice1, int iRef, int

iPrescaler);

<iDevice>

Index of the device to be accessed.

<iSubdevice1>

Index of the subdevice counter 0 (used as prescaler).

<iRef>

Defines the clock source for counter 0 (CLK_0):

 ME_REF_CTR_INTERNAL_1MHZ

Clock source is the internal 1 MHz crystal oszillator.

 ME_REF_CTR_INTERNAL_10MHZ

Clock source is the internal 10 MHz crystal oszillator.

 ME_REF_CTR_EXTERNAL

Clock source is an external oszillator.

<iPrescaler>

Value for the prescaler (counter 0) in the range 2…65535.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

4 Function Reference page 176 Meilhaus Electronic

 Return Value:

 ME_ERRNO_SUCCESS: Function returned successfully.

 ME_ERRNO_NOT_OPEN: ME-iDS is not properly open.

 ME_ERRNO_INVALID_DEVICE: no device mapped to requested

ID.

 ME_ERRNO_INVALID_SUBDEVICE: on requested device no subde-

vice mapped to requested ID.

 ME_ERRNO_NOT_SUPPORTED: used subdevice is no counter.

 ME_ERRNO_INVALID_REF: used signal source not available.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 177 Meilhaus Electronic

5 Appendix

A Special Operation Modes

A1 Operation Modes 8254

The ME-iDS supports the standard counter chip of type 8254 providing

three 16-bit counters which can be configured independently of each other

for the following 6 operation modes (see also data-sheet of the manufac-

turer). Each counter is a subdevice of type ME_TYPE_CTR, sub-type

ME_SUBTYPE_CTR_8254 betrachtet.

 Mode 0: Change state at zero

(ME_SINGLE_CONFIG_CTR_8254_MODE_0)

 Mode 1: Retriggerable „One Shot“

(ME_SINGLE_CONFIG_CTR_8254_MODE_1)

 Mode 2: Asymmetric divider

(ME_SINGLE_CONFIG_CTR_8254_MODE_2)

 Mode 3: Symmetric divider

(ME_SINGLE_CONFIG_CTR_8254_MODE_3)

 Mode 4: Counter start by software trigger

(ME_SINGLE_CONFIG_CTR_8254_MODE_4)

 Mode 5: Counter start by hardware trigger

(ME_SINGLE_CONFIG_CTR_8254_MODE_5)

Note: The real voltage level at the inputs/outputs of the counters depends

on the respective hardware. E.g. on opto-isolated versions of the ME-4600

series a high level at the output corresponds to the „high-impedance“ state

and a low-level to the state „driving“. Please note the corresponding hard-

ware manual. The logic levels in the following description apply for the

counter chip without further circuitry.

Mode 0: Change State at Zero

This mode of operation can be used e.g. to trigger an interrupt when the

counter meets zero. The counter output (OUT_0…2) is set to low when the

counter is initialised or when a new start value is loaded. To enable count-

ing, a high level must be applied to the GATE input. As soon as the start

value is loaded and the counter is enabled, the counter begins counting

downwards and the output remains low.

Upon zero axis crossing, the output is set to high and remains there until

the counter is reloaded or initialised again. The counter continues to count

down, even after zero is met. If a counter register is loaded during a count

in progress the following occurs:

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 178 Meilhaus Electronic

1. when the first byte is written, the count process is stopped.

2. when the second byte is written, the count process begins again.

Mode 1: Retriggerable „One-Shot“

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. When a start value is loaded the output becomes low on the next

clock following to the first trigger pulse at the GATE input (positive edge).

Upon zero axis crossing, the counter output is set to high again.

On a positive edge at the GATE input, the counter can be reset (re-trig-

gered) to the start value. The output remains low until the counter meets

zero.

The counter value can be read at any time without effecting the count pro-

cess.

Mode 2: Asymmetric Divider

In this mode, the counter is used as a frequency divider. The counter out-

put (OUT_0…2) is set to high after initialisation. When the counter is ena-

bled by applying a high level to the GATE input, the counter is counting

downwards and the output remains high. When the count meets the value

0001Hex, the output becomes low for one clock cycle. This process will be

repeated periodically as long as the GATE input is enabled (high level),

else the output is set to high immediately.

If the counter register is reloaded between two output pulses, the current

counter state is not affected. However the new value is used on the next

period.

Mode 3: Symmetric Divider

This mode of operation is similar to mode 2 with the difference that the di-

vided frequency is symmetric (only for even count values). The counter

output (OUT_0…2) is set to high after initialisation. When the GATE input

is enabled (high level), the counter is counting downwards in steps of 2.

The output will toggle its state on a half of the start value number of peri-

ods referenced to the input clock (starting with high level). This process

will be repeated periodically as long as the GATE input is enabled (high

level), else the output is set to high immediately.

If the counter is reloaded between two output pulses, the current counter

state is not affected. The new value is used on the next period.

Mode 4: Counter Start by Software Trigger

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 179 Meilhaus Electronic

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. To enable the counter the GATE input must be enabled (high level).

When the counter is loaded (software trigger) and enabled, the counter

starts counting downwards, while the output remains high.

Upon zero axis crossing the output becomes low for one clock cycle. After-

wards the output becomes high again and remains there until the counter

is initialised and a new start value is loaded.

If the counter is reloaded during a count process, the new start value is

used in the next cycle.

Mode 5: Counter Start by Hardware Trigger

The counter output (OUT_0…2) is set to high when the counter is initial-

ised. After loading a start value to the counter, counting starts on the next

clock following to the first trigger pulse at the GATE input (positive edge).

Upon zero axis crossing, the output becomes low for one clock cycle. Af-

terwards, the output becomes high again and remains there until the next

trigger pulse occurs.

If the count register is reloaded between two trigger pulses, the new start

value is used after the next trigger pulse.

The counter can be reset to the start value (re-triggered) at any time by

applying a positive edge to the GATE input. The output remains high until

zero axis crossing is met

A2 Pulse Width Modulation

A special application for the counters of type 8254 is the output of a rec-

tangular signal with a variable duty cycle (operation mode „PWM“). With

that you can output a rectangular signal of maximum 50 kHz with a varia-

ble duty cycle to OUT_2. Condition is a correct switching of inputs and out-

puts (CLK, GATE, OUT) by the external circuitry (see diagram 31 for TTL

I/Os). For opto-isolated counters read the appropriate chapter for PWM

switching of opto-isolated counters in the hardware manual.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 180 Meilhaus Electronic

Diagram 31: PWM switching for TTL I/Os

Counter 0 is used as a prescaler for the externally driven base clock. Us-

ing the parameter <iPrescaler> you can vary the frequency fOUT_2 as

follows:

By the parameter <iDutyCycle> you can set the duty cycle between

1…99 % in steps of 1 % (see diagram 32). The operation is started imme-

diately after calling the function meUtiltiyPWMStart() and stopped by the

function meUtiltiyPWMStop(). No further programming of the counters is

required.

On opto-isolated devices the output OUT_2 is an open collector output as

a rule. It means a logical „1“ is driving the output and a logical „0“ sets the

output in a high impedance state (see also hardware manual).

fOUT_2 =

Base clock
(with <iPrescaler> = 2…(216– 1))

 <iPrescaler> ⋅ 100

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 181 Meilhaus Electronic

Diagram 32: Duty cycle PWM signal

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 182 Meilhaus Electronic

A3 Bit-Pattern Output of ME-4680

This chapter describes some particularities of the timer controlled bit-pat-

tern output as it is implemented on the ME-4680. The FIFO from AO chan-

nel 3 serves a special purpose for doing this. Separated into low byte and

high byte, the 16-bit-wide FIFO values (= bit patterns) can be assigned by

byte to the 8-bit-wide digital ports (subdevice 0, 1, 2, 3). See diagram 33

on page 220. A port used for bit-pattern output is automatically configured

as output. The input port B (subdevice 1) on opto-isolated boards cannot

be used for bit-pattern output.

Programming is done in operation mode streaming. A digital port used for

bit-pattern output must be a subdevice of type ME_TYPE_DO or

ME_TYPE_DIO, subtype ME_SUBTYPE_STREAMING. The following pa-

rameters can be configured by the functions meIOSingleConfig() and meI-

OStreamConfig().

 Configure one or several digital output ports for the timer-controlled bit-

pattern output with the constant ME_SINGLE_CONFIG_

DIO_BIT_PATTERN in parameter <iSingleConfig> of function meI-

OSingleConfig().

 Assignment of low-byte and high-byte of the 16-bit-wide FIFO values to

the specified digital port with the constants ME_REF_FIFO_LOW resp.

ME_REF_FIFO_HIGH in parameter <iRef> of function meIOSingle-

Config().

 The subdevice of AO channel 3 (subdevice with index 11 of type

ME_TYPE_AO) is configured for bit-pattern output with the constant

ME_IO_STREAM_CONFIG_BIT_PATTERN in parameter <iFlags>

of the function meIOStreamConfig().

 As a reference the constant ME_REF_AO_GROUND must be used in

parameter <iRef> of the function meIOStreamConfig(). However use

the ground pins of the digital I/O section (PC_GND resp. DIO_GND) for

ground reference (not the AO section´s ground).

 Trigger channel, trigger type and trigger edge are defined by the trigger

structure meIOStreamTrigger of the function meIOStreamConfig().

 A programmable counter serves as timer which is configured by the

trigger structure meIOStreamTrigger. The 32-bit counter uses a

33 MHz base frequency. This results in a period of 30.30 ns, which is

the smallest time unit available. This will be referred to as “1 Tick” in

the following sections. The functions meIOStreamFrequencyTo-Ticks()

and meIOStreamTimeToTicks() offer a convenient way to convert the

frequency resp. the period into ticks for programming the timer.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 183 Meilhaus Electronic

Diagram 33: Port mapping

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 184 Meilhaus Electronic

A4 MEphisto Scope

Special features and limitations

For a demonstration of how to use the special features of the MEphisto

Scope in streaming mode, please see the source code of the sample pro-

gram 'Con_meIOMEphistoScopeStreamRead' (C++ test program) in-

cluded in the SDK.

Using the function meIOSetChannelOffset() the anlog input ranges can be

adjusted. This makes it possible to measure an incoming potential very ac-

curately if you know roughly in advance the minimum and maximum val-

ues which are likely to occur. Currently this only applies to streaming

mode, in single mode the ranges have a fixed offset of 0.0 Volts. If you

use the function meIOSetChannelOffset() to change an offset range for a

streaming operation then you must adjust the final result accordingly by

adding this same offset.

In contrast to other ME-iDS devices, the MEphisto Scope can only be used

by one application at a time. If one or more MEphisto Scopes (UM202,

UM203) are present in a system, then the first application using the ME-

iDS which is started will 'see' these in a listing of all devices. As long as

this first application is running, the MEphisto Scope devices will be invisi-

ble to subsequent applications and cannot be addressed by them. Only

when the first application is terminated will the MEphisto Scope devices be

visible to the next ME-iDS application which starts.

The digital input/output subdevice (subdevice 0) and the analog input sub-

device (subdevice 1) are not completely independent of one another. If a

streaming operation is running on the analog subdevice, then an attempt

to use the digital input/output subdevice will cause an error (subdevice

busy, error 33). During any other operation on one of the subdevices, any

other thread trying to use either of the subdevices will be queued and will

only gain accesss to the subdevice after the first operation has terminated.

In single mode the result returned on calling meIOSingle() is the average

of a large number of measurements taken over a period of approximately

0.9 seconds. During this period, any other thread trying to use either sub-

device will be queued as explained in the paragraph above.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 185 Meilhaus Electronic

A5 ME-MultiSig Control

An extensive support of the ME-MultiSig system is in the pipeline (please

ask our sales team for further details). Because of that the description in

this chapter is to be considered as preliminary.

To understand the ME-MultiSig system it is strongly recommended to fully

read the ME-MultiSig manual beforehand! In the following paragraphs you

find some notes concerning the programming in combination with the ME-

iDS:

 With the ME-iDS the ME-MultiSig system can be programmed fully

transparently. „Transparent“ means, e.g. you can access to a MUX-

chain which consists of one master and one slave board similar to an

AI subdevice (type ME_TYPE_AI) with 64 channels.

 Condition for the transparent programming is the „registration“ of the

used base boards (ME-MUX32-M(aster), ME-MUX32-S(lave), ME-DE-

MUX32) within the ME-iDC. There you determine number and type of

the base boards. A MUX-chain can consist of maximum one ME-

MUX32-M and up to seven ME-MUX32-S or one ME-DEMUX32.

 Make sure that the ME-MultiSig base boards of type ME-MUX32-M/S

are configured for “Single-Mux” operation. See manual ME-MultiSig

system.

 The AI-channel of the board to be used for the MUX-chain must be set

in the ME-iDC (default: AI-channel 0). The channel number must corre-

spond with the solder-bridge “A” on the master board (ME-MUX32-M).

See manual ME-MultiSig system.

 For using the full feature range in MUX-operation a subdevice of type

„DIO“ or „DO“ with a minimum of 16 digital output lines is required. The

output line can be selected of a pool of appropriate ports within the ME-

iDS. Note that the wiring must correspond with it.

 The conversion of the digital values in the accordingly physical unit

(voltage, current, temperature) and reverse is done by the functions

meUtilityDigitalToPhysical resp. meUtilityPhysicalToDigital in view of

the used plug-on modules.

 Note when configuring, that the amplification factor within a channel

group of the base boards ME-MUX32-M(aster) and ME-MUX32-S(lave)

must be the same (default: G = 1). See functions meIOSingleConfig

resp. meIOStreamConfig.

 The address LED of the base boards ME-MUX32-M and ME-MUX32-S

can be controlled by the parameter <Flags> of the function meI-

OSingleConfig.

 All master and slave boards can be reset to their default state with the

functions meIOResetDevice resp. meIOResetSubdevice (Gain G=1,

address LED off).

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 186 Meilhaus Electronic

 Using the operation modes „Stream-Input“ resp. „Stream-Output“ in

combination with the ME-MultiSig system is only possible after registra-

tion of the base boards choosing the option „Use streaming operation

mode“ in the ME-iDC. For this operation mode you need a multi-I/O

board of type ME-4680. In that case AO channel 3 is locked for timer-

controlled output.

 If you register a MUX base board of type Typ ME-MUX32-M with the

ME-iDC you cannot access to the remaining AI channels of the board.

In that case the AI subdevice includes only the channels of the MUX-

chain (max. 256 channels).

 Connection and transparent programming of a base board of type ME-

SIG32 is possible without registration at the ME-iDC.

 If you don’t want to program transparently you can program all opera-

tion modes with the ME-iDS as described in the ME-MultiSig manual

„on foot“.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 187 Meilhaus Electronic

B Subdevice Caps

B1 Caps in meQuerySubdeviceCaps()

The capabilities of the queried subdevices are returned by the parameter

<piCaps> of the function meQuerySubdeviceCaps(). If several „caps“ ap-

ply, the values are ORed bit by bit. E.g.: a subdevice provides a digital trig-

ger input which triggers alternatively on a rising, falling or any (i.e. rising or

falling) edge. The returned value is: 0x000E8000.

Definitions Description Hex-Value

ME_CAPS_NONE No special capabilites 0x00000000

Analog Acquisition

ME_CAPS_AI_TRIG_SYNCHRONOUS Analog acquisition can be
started synchronously

0x00000001

ME_CAPS_AI_TRIG_SIMULTANEOUS 0x00000002

ME_CAPS_AI_FIFO AI-FIFO available 0x00000004

ME_CAPS_AI_FIFO_THRESHOLD Threshold for reading the
AI-FIFO

0x00000008

ME_CAPS_AI_SAMPLE_HOLD adjustable 0x00008000

ME_CAPS_AI_TRIG_DIGITAL „Sample & Hold“ unit avail-
able

0x00010000

ME_CAPS_AI_TRIG_ANALOG Digital trigger input 0x00020000

ME_CAPS_AI_TRIG_EDGE_ RISING Analoger Triggereingang 0x00040000

ME_CAPS_AI_TRIG_EDGE_ FALLING Trigger on rising edge 0x00080000

ME_CAPS_AI_TRIG_EDGE_ ANY Trigger on falling edge 0x00000010

ME_CAPS_AI_DIFFERENTIAL Trigger on any edge 0x00000001

Analog Output

ME_CAPS_AO_TRIG_ SYNCHRONOUS Analog output can be
started synchronously

0x00000001

ME_CAPS_AO_TRIG_ SIMULTANEOUS

ME_CAPS_AO_FIFO AO-FIFO available 0x00000002

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 188 Meilhaus Electronic

ME_CAPS_AO_FIFO_THRESHOLD Threshold for re-loading
the AO-FIFO adjustable

0x00000004

ME_CAPS_AO_TRIG_DIGITAL Digital trigger input 0x00008000

ME_CAPS_AO_TRIG_ANALOG Analog trigger input 0x00010000

ME_CAPS_AO_TRIG_EDGE_ RISING Trigger on rising edge 0x00020000

ME_CAPS_AO_TRIG_EDGE_ FALLING Trigger on falling edge 0x00040000

ME_CAPS_AO_TRIG_EDGE_ANY Trigger on any edge 0x00080000

ME_CAPS_AO_DIFFERENTIAL Differential output possible 0x00000010

Digital I/O

ME_CAPS_DIO_DIR_BIT Direction can be set per bit 0x00000001

ME_CAPS_DIO_DIR_BYTE Direction can be set per
byte (8-bit block)

0x00000002

ME_CAPS_DIO_DIR_WORD Direction can be set per
word (16-bit block)

0x00000004

ME_CAPS_DIO_DIR_DWORD Direction can be set per
long-word (32-bit block)

0x00000008

ME_CAPS_DIO_SINK_SOURCE Sink/Source switch-over 0x00000010

ME_CAPS_DIO_BIT_PATTERN_ IRQ IRQ on bit-pattern match 0x00000020

ME_CAPS_DIO_BIT_MASK_IRQ_

EDGE_RISING

IRQ on a rising edge of at
least one active bit

0x00000040

ME_CAPS_DIO_BIT_MASK_IRQ_

EDGE_FALLING

IRQ on a falling edge of at
least one active bit

0x00000080

ME_CAPS_DIO_BIT_MASK_IRQ_

EDGE_ANY

IRQ on any edge of at least
one active bit

0x00000100

ME_CAPS_DIO_OVER_TEMP_IRQ IRQ on over-heating of the
driver chip

0x00000200

ME_CAPS_DIO_NORMAL_TEMP_ IRQ IRQ on cooling down to
normal temperature of
driver chip

0x00000400

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 189 Meilhaus Electronic

ME_CAPS_DIO_TRIG_ SYNCHRONOUS Digital input/output can be
started synchronously

0x00004000

ME_CAPS_DIO_TRIG_DIGITAL Digital trigger input 0x00008000

ME_CAPS_DIO_TRIG_ANALOG Analog trigger input 0x00010000

ME_CAPS_DIO_TRIG_EDGE_ RISING Trigger on rising edge 0x00020000

ME_CAPS_DIO_TRIG_EDGE_ FALLING Trigger on falling edge 0x00040000

ME_CAPS_DIO_TRIG_EDGE_ANY Trigger on any edge 0x00080000

Frequency I/O

ME_CAPS_FIO_SINK_SOURCE Sink/Source switch-over 0x00000010

Counter

ME_CAPS_CTR_CLK_PREVIOUS CLK can be sourced by
OUT of the previous coun-
ter

0x00000001

ME_CAPS_CTR_CLK_INTERNAL_1MHZ Counter can be sourced by
an internal 1 MHz clock

0x00000002

ME_CAPS_CTR_CLK_INTERNAL_10MHZ Counter can be sourced by
an internal 10 MHz clock

0x00000004

ME_CAPS_CTR_CLK_EXTERNAL Counter can be sourced
via an external clock input

0x00000008

External Interrupt

ME_CAPS_EXT_IRQ_EDGE_ RISING External IRQ can be trig-
gered on a rising edge

0x00000001

ME_CAPS_EXT_IRQ_EDGE_ FALLING External IRQ can be trig-
gered on a rising edge

0x00000002

ME_CAPS_EXT_IRQ_EDGE_ANY External IRQ can be trig-
gered on any edge

0x00000004

Table 14: Caps in meQuerySubdeviceCaps

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 190 Meilhaus Electronic

B2 Caps in meQuerySubdeviceCapsArgs()

The value of the queried “cap” of a subdevice will be returned in parameter

<piArgs> of the function meQuerySubdeviceCapsArgs().

Definitions Description Hex-Value

Analog Acquisition

ME_CAP_AI_FIFO_SIZE Query the AI-FIFO size 0x001D0000

ME_CAP_AI_BUFFER_SIZE Query the size of the AI buffer allo-
cated by the driver

0x001D0001

ME_CAP_AI_CHANNEL_LIST_

SIZE

Query the AI channel-list size 0x001D0002

ME_CAP_AI_MAX_THRESH-

OLD_ SIZE

Maximum number of values in the
AI-FIFO

0x001D0003

Analog Output

ME_CAP_AO_FIFO_SIZE Query the AI-FIFO size 0x001F0000

ME_CAP_AO_BUFFER_SIZE Query the size of the AI buffer allo-
cated by the driver

0x001F0001

ME_CAP_AO_CHANNEL_LIST_

SIZE

Query the AI channel-list size 0x001F0002

ME_CAP_AO_MAX_THRESH-

OLD_ SIZE

Maximum number of values in the 0x001F0003

Counter

ME_CAP_CTR_WIDTH Query the bid-width of the counter 0x00200000

Table 15: Capabilities for meQuerySubdeviceCapsArgs

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 191 Meilhaus Electronic

C Properties

An overview of the reserved keywords for access to the properties can be

found in the ME-iDS help file.

Note: Install ME-iDS 2.0 or higher for using the properties.

D Error Codes

A table with all error codes can be found in the ME-iDS help file.

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 192 Meilhaus Electronic

E Accessories

We recommend to use high-quality connector cables with single-shielded

lines per channel.

For further accessories please refer to the current Meilhaus Electronic cat-

alog and the internet:

www.meilhaus.de/en/pc-boards/accessories/

http://www.meilhaus.de/en/pc-boards/accessories/

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 193 Meilhaus Electronic

F Technical Questions

F1 Hotline

Should you have questions or inquiries concerning your Meilhaus device,

please contact us:

Meilhaus Electronic GmbH
Repair & Service
Am Sonnenlicht 2
D-82239 Alling

Sales: Support:
Tel.: (08141) 52 71 – 0 Tel.: (08141) 52 71 – 188
Fax: (08141) 52 71 – 129 Fax: (08141) 52 71 – 169

eMail: sales@meilhaus.de eMail: support@meilhaus.de

Download-Server and Driver Update:
To download current driver versions for Meilhaus Electronic devices as
well as manuals in PDF format, please go to:
www.meilhaus.org/driver

Service Department with RMA Process:
In case you need to return a board for repair purposes, we strongly ask
you attach a detailed description of the error as well as information regard-
ing your computer/system and the software used. Please register online
using our RMA process:
www.meilhaus.de/en/infos/service/rma.htm.

mailto:sales@meilhaus.de
mailto:support@meilhaus.de
http://www.meilhaus.org/downloadserver/me-46x0.htm#englisch
http://www.meilhaus.de/en/infos/service/rma.htm

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 194 Meilhaus Electronic

G Index

“

“FPGA” (planned) 33

A

Abbreviations for Property Pathes 23

Access Type of Properties 28

Accessories 199

Analog Input/Output 31, 40

Appendix 183

Attribute 25

Auxiliary Functions 34, 164

B

Basic Procedure 35

Bit-Pattern Output of ME-4680 76, 188

C

Caps in meQuerySubdeviceCaps() 193

Caps in meQuerySubdeviceCapsArgs() 197

Channel List 54

Concept of the Library 20

Configuration Utility (ME-iDC) 12

Configuring Hardware 54

Counter Operation 47

D

Description of the API Functions 82

Digital Input/Output 32, 41

Documentation 11

E

Error Codes 198

Error handling 36

Extra Features 76

F

Firmware Configuration 14

Frequency Input/Output 32, 42

Function Reference 81

G

General Device Properties 29

General Notes 81

H

Hierarchy Levels 20

Hotline 200

I

Initialization 35

Input/Output Functions 34, 111

Installation 12

Interrupt 32

Interrupt Operation 79

L

Language Support 18

Library Files 18

M

meCloser 165

meErrorGetLast 168

meErrorGetLastMessage 168

meErrorGetMessage 169

meErrorSetDefaultProc 170

meErrorSetUserProc 170

meIOIrqSetCallback 117

meIOIrqStart 111

meIOIrqStop 114

meIOIrqWait 115

meIOResetDevice 111

meIOSetChannelOffset 120

meIOSingeTimeToTicks 133

meIOSingle 127

meIOSingleConfig 122

meIOSingleTicksToTime 131

meIOStreamConfig 135

meIOStreamFrequencyToTicks 148

meIOStreamNewValues 161

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 195 Meilhaus Electronic

meIOStreamRead 155

meIOStreamSetCallbacks 162

meIOStreamStart 150

meIOStreamStatus 159

meIOStreamStop 152

meIOStreamTimeTo Ticks 146

meIOStreamWrite 157

meLockDevice 166

meLockDriver 166

meLockSubdevice 167

ME-MultiSig Control 191

MEphisto Scope 190

mePropertyGetDoubleA 105

mePropertyGetIntA 104

mePropertyGetStringA 106

mePropertySetDoubleA 108

mePropertySetIntA 107

mePropertySetStringA 109

meQueryDescriptionDevice 89

meQueryInfoDevice 86

meQueryNameDevice 88

meQueryNameDeviceDriver 87

meQueryNumberChannels 93

meQueryNumberDevices 91

meQueryNumberRanges 93

meQueryNumberSubdevices 91

meQueryRangeByMinMax 102

meQueryRangeInfo 94

meQuerySubdeviceByType 100

meQuerySubdeviceCaps 96

meQuerySubdeviceCapsArgs 99

meQuerySubdeviceType 92

meQueryVersionDeviceDriver 90

meQueryVersionLibrary 89

meQueryVersionMainDriver 90

meUtilityDigitalToPhysical 171

meUtilityDigitalToPhysicalIV 174

meUtilityExtractValues 178

meUtilityPhysicalToDigital 176

meUtilityPhysicalToDigitalV 177

meUtilityPWMRestart 181

meUtilityPWMStart 179

meUtilityPWMStop 181

Mode „Pulse Width Modulation“ 50

Mode 0: Change State at Zero 183

Mode 1: Retriggerable „One-Shot“ 49, 184

Mode 2: Asymmetric Divider 49, 184

Mode 3: Symmetric Divider 49, 185

Mode 4: Counter Start by Software Trigger 50, 185

Mode 5: Counter Start by Hardware Trigger 50, 185

N

Naming Conventions 10

O

Offset Setting 79

Operation Modes 38

P

Procedure Writing Data 71

Programming 17

Properties 21, 198

Properties of Configuration Containers 31

Property Functions 24, 34, 103

Property Pathes 22

Property Types 27

Protection 35

Pulse Width Modulation 186

Q

Query Functions 33

Query-Functions 86

Querying Hardware Properties 53

R

Reading Data 65

Reading Property Values 24

Reading with Callback Function 68

Reading without Callback Function 68

Registering a Remote Device 14

S

Sample and Hold 76

Setting the IP Address 16

Single Operation 38

Special Operation Modes 183

Start Operation/Trigger Options 39

Stop Streaming Operation 75

Streaming Operation 53

Structure of the API 33

Subdevice Caps 193

Subdevice Configuration 13

Subdevice Properties 30

Subdevices 31

Supported Devices 8

Synchronous Start 77

System Attributes 29

System Requirements 10

T

Technical Questions 200

Manual Meilhaus Intelligent Driver System (ME-iDS) Revision 3.0

5 Appendix page 196 Meilhaus Electronic

Timing Stream-Timer 59

Timing Stream-Trigger-List 63

Trigger Structure 54

U

Unforeseeable Misapplications 10

W

Wraparound Option 75

Writing Data 70

Writing with Callback Function 74

Writing without Callback Function 73

