

Product Datasheet - Technical Specifications

More information in our Web-Shop at **> www.meilhaus.com**

Your contact

Technical and commercial sales, price information, quotations, demo/test equipment, consulting:

Tel.: +49 - (0)81 41 - 52 71-0

E-Mail: sales@meilhaus.com

Meilhaus Electronic GmbH Am Sonnenlicht 2

 Am Sonnenlicht 2
 Tel. +49 - (0)81 41 - 52 71-0 E

 82239 Alling/Germany
 Mail sales@meilhaus.com

 Mentioned company and product names may be registered trademarks of the respective

Mentioned company and product names may be registered trademarks of the respective companies. Errors and omissions excepted. © Meilhaus Electronic.

www.meilhaus.com

R&S®ESSENTIALS R&S®MXO 4 Series OSCILLOSCOPE

Next generation oscilloscope for accelerated insight

Product Brochure Version 07.00

ROHDE&SCHWARZ

Make ideas real

NEXT GENERATION TECHNOLOGY R&S®MXO 4 Series OSCILLOSCOPE

The R&S[®]MXO 4 Series is the first of a new generation of oscilloscopes that excels in both performance and value. The instruments deliver a once-in-a-decade engineering breakthrough for accelerated insight.

A touch above other oscilloscopes in its class, the R&S®MXO 4 Series oscilloscope sports an impressive 13.3" Full HD capacitive touchscreen and an intuitive user interface with a learning curve of less than 15 minutes.

WHY ENGINEERS CONTINUE TO UPGRADE TO ROHDE & SCHWARZ OSCILLOSCOPES?

- Trusted, global company committed to highest quality standards, long-term customer relationships and technological innovation
- ► Industry's newest oscilloscope portfolio from 60 MHz to 16 GHz
- ► ASIC investments enable world's most responsive oscilloscope
- ► Frontend technology developments offer pristine signal integrity
- 16-bit and 18-bit architectures with HD mode provide highest resolution
- > Digital triggering delivers world's most sensitive event isolation
- Superior user interface and front panel experience

WHY USE THE R&S®MXO 4?

- World's first oscilloscope with update rate exceeding 4.5 million waveforms per second
- ► Industry leading 12-bit ADC at all sample rates
- ► Industry best 18-bit architecture
- Fastest and most accurate spectrum analysis in its class
- ► Industry's deepest standard memory of 400 Mpoints per channel
- ► Industry's fastest trigger rearm time of 21 ns
- First in class to incorporate new digital triggering technology
- ► Industry's most sensitive trigger of 0.0001 div
- ▶ Best in class trigger jitter of < 1 ps
- First oscilloscope with dual-path protocol analysis
- ► First in class with R&S[®]SmartGrid user interface

CONTENTS

FEATURES AND BENEFITS

Cutting-edge technology blocks

page 4

Find signal anomalies quickly

► page 5

See your signals accurately

► page 6

Capture more time

► page 7

Isolate events with more precision

► page 8

Spectrum analysis

page 9

Superior user experience

► page 10

Enhanced usability

page 12

Fun to drive

► page 14

Your go-to tool

► page 15

APPLICATIONS

EMI debugging

► page 16

Logic analysis

► page 17

Serial bus analysis

► page 18

Power analysis

page 20

Frequency response analysis ▶ page 21

Power integrity

page 22

Integrated arbitrary waveform generator ▶ page 23

PROBES AND ACCESSORIES

Extensive probe portfolio

► page 24

And there is so much more ...

► page 27

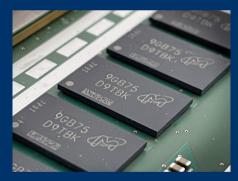
- 200 MHz to 1.5 GHz bandwidth
- Up to 5 Gsample/s sample rate
- 400 Mpoints per channel standard memory
- 12-bit ADC at all sample rates
- 18-bit architecture with HD mode
- Precise digital trigger

CUTTING-EDGE TECHNOLOGY BLOCKS THAT HELP GIVE YOU ACCELERATED INSIGHT

The R&S®MXO 4 Series oscilloscopes utilize advanced technologies to achieve fast and accurate results. Custom technology and innovative features in our oscilloscopes quickly boost your understanding of circuit behaviors.

MXO-EP processing ASIC

See more of your signals, faster.


At the heart of each R&S[®]MXO 4 Series oscilloscope is a Rohde&Schwarz developed application-specific integrated circuit (ASIC): MXO-EP (extreme performance). MXO-EP processes 200 Gbit/s to deliver the world's fastest update rate of up to > 4.5 million acquisitions/s. See and capture more of your signals, faster. Find rare signal anomalies quickly. Experience the most responsive oscilloscope in the industry.

12-bit ADC, 18-bit vertical architecture

Measure your signals accurately.

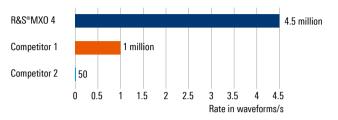
Measurement accuracy is highly dependent on the components in the signal path, e.g. amplifiers, samplers and A/D converters. The workhorse of the R&S®MXO 4 Series is an extremely low-noise signal path including a 12-bit ADC. High-definition (HD) mode increases vertical resolution to industry best 18-bit architecture. Get accurate measurements all the time.

Responsive deep memory Capture more of your signals

R&S[®]MXO 4 Series oscilloscopes come equipped with the industry's deepest standard acquisition memory of 400 Mpoints per channel. Capture up to 80 ms of power up or power down sequences with the highest time resolution of 200 ps. The memory controller in the MXO-EP ASIC ensures the oscilloscope stays responsive with deep memory.

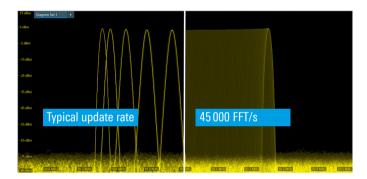
Advanced digital triggering system Easily isolate subtle signal variations.

The MXO-EP ASIC incorporates advanced digital triggering that evaluates the ADC samples in the acquisition path in real time. Trigger on small events of less than 0.0001 vertical division that no other oscilloscope can isolate. Choose your own trigger hysteresis. Apply digital filters to suppress noise to get the most precise triggering available.

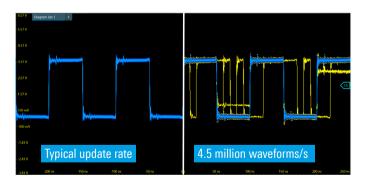

FIND SIGNAL ANOMALIES OUICKLY WITH UNPARALLELED UPDATE RATES

- ▶ World's fastest acquisition rate of up to > 4.5 million waveforms/s reveals infrequent anomalies instantly
- ► Up to 90 % real-time signal capture and display ensures instant display of all signal details
- ► Signal processing based on MXO-EP ASIC ensures responsive deep memory

World's fastest update rate


The R&S[®]MXO 4 oscilloscope processing path contains a dedicated ASIC: the MXO-EP (extreme performance). Thanks to optimized signal processing, the R&S[®]MXO 4 oscilloscope reaches an exceptional update rate. Its unique architecture allows the R&S[®]MXO 4 to acquire, process and display up to > 4.5 million waveforms/s.

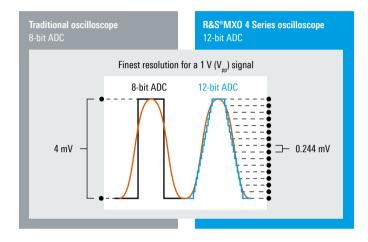
Real-time acquisition rate


Available with active automatic measurements, FFTs or cursor measurements

The R&S[®]MXO 4 oscilloscope offers a high update rate even when FFTs, automatic measurements or cursor measurements are active. Also when performing analysis with deep memory acquisitions, the MXO-EP based signal processing path ensures smooth workflows.

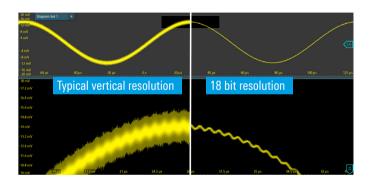
Quickly and reliably detect sporadic signal faults

The statistical confidence in results grows with the number of waveforms acquired. A high update rate increases the likelihood of detecting and displaying signal faults and including them in the analysis. Its high update rate enables the R&S®MXO 4 to generate trustworthy statistical results based on a high number of waveforms acquired in a short time. This is crucial for quickly understanding electronic circuits.

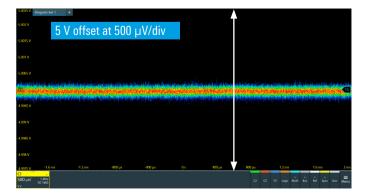


SEE YOUR SIGNALS ACCURATELY LOWEST MEASUREMENT NOISE AND HIGHEST VERTICAL RESOLUTION

- ▶ 12-bit ADC for high vertical resolution at all sample rates across the full bandwidth
- ► 18-bit architecture with HD mode
- Low noise at 50 Ω input impedance (1 mV/div setting)
 - 104 μV (at 1 GHz, 12-bit standard mode)
 - 56 μV (at 500 MHz, 14-bit HD mode)
- \blacktriangleright Vertical scaling down to 500 $\mu\text{V/div}$ at full bandwidth
- $\blacktriangleright\,$ Industry's highest available offset range of ±5 V at 500 $\mu\text{V/div}$


12-bit ADC even at the fastest sample rates

All R&S®MXO 4 Series oscilloscopes incorporate a 12-bit ADC. 12 bit vertical resolution delivers 4096 quantization levels for precise vertical sampling. This is a 16-fold improvement over 8-bit ADCs. The ADC stays in 12-bit mode all the time, even at the fastest sample rates.


18-bit architecture with HD mode

Offering a user tradeoff between bandwidth and bits of resolution, HD mode, implemented in hardware for fast speed, achieves up to 18 bit vertical resolution. This allows you to see sharper waveforms with more signal details that would otherwise be masked by noise. In addition to superior vertical resolution, the R&S®MXO 4 Series oscilloscope is engineered with the lowest-in-industry system measurement noise of just 22 μ V AC (RMS) at 1 mV/div.

Vertical sensitivity to 500 μ V/div with ±5 V offset range

The R&S[®]MXO 4 Series oscilloscope offers an outstanding sensitivity down to 500 μ V/div without any unexpected reduction in bandwidth. With an offset of ±5 V at higher sensitivity vertical scale, you can easily place the signal at the center of the screen. A higher offset enables use of more sensitive vertical resolution, meaning a higher number of ADC bits and lower noise.

CAPTURE MORE TIME DEEPEST STANDARD MEMORY

- ► Industry's deepest memory of 400 Mpoints per channel (optionally 800 Mpoints interleaved)
- Standard segmented memory (10 000 segments, optionally 1 000 000 segments)
- Standard history mode (10 000 acquisitions, optionally 1 000 000 acquisitions)

Deep memory as an insurance policy

After bandwidth and sample rate, memory depth is the most important attribute that determines an oscilloscope's ability to handle a large range of troubleshooting tasks. More acquisition memory gives oscilloscopes the ability to capture more time. More memory enables oscilloscopes to retain the maximum sample rate and bandwidth even with slower timebase settings.

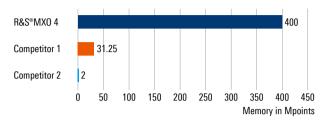
With 400 Mpoints acquisition memory standard on all four channels simultaneously, the R&S[®]MXO 4 Series oscillo-scope offers up to 100 times the standard memory compared to the primary competitor.

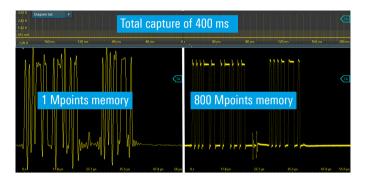
Maintain fast sample rates with slow timebase settings

Ever adjusted your oscilloscope timebase to capture longer periods of time, pressed stop, then zoomed in to find signal details that do not look right? If so, you have experienced the aliasing problem that oscilloscopes with shallow memory have. The deep memory of the R&S[®]MXO 4 enables longer time captures at full sample rate.

Standard segmented memory

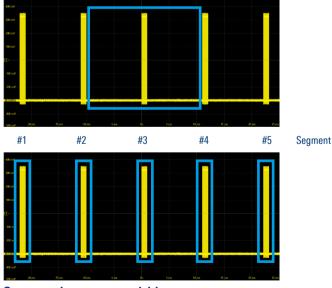
Use segmented memory to capture signals separated by inactivity. Examples include laser pulses, serial bus activities and RF pulses. The segmented memory of the R&S®MXO 4 Series oscilloscope enables signal capture over a long observation period of up to 1000000 segments.


Standard history capability


Press stop and use history mode to see previously captured acquisitions. History mode is an always-on capability. All measurement and analysis tools are available in history mode, including the serial bus decoding and automatic measurements.

Need even more memory?

During tests that involve looking at power up/power down behavior or decoding bus events over a longer period of time, there is always the wish to record longer time intervals. The memory extension option turns on 800 Mpoints (2 channels interleaved), up to 1000000 segments and up to 1000000 acquisitions.


Standard memory per channel

Traditional single-shot acquisition

Total acquisition time = memory depth/sample rate

Segmented memory acquisition Acquisition time per segment = memory depth/# of segments

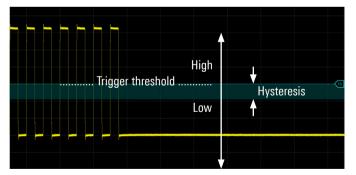
ISOLATE EVENTS WITH MORE PRECISION HIGH-PRECISION DIGITAL TRIGGER

- ► Industry's most sensitive trigger: 0.0001 vertical division
- Best in class trigger jitter of just 1 ps
- World's fastest trigger rearm time of < 21 ns</p>
- Adjustable digital trigger filters
- User definable hysteresis

Modern digital trigger

The MXO-EP ASIC incorporates the Rohde&Schwarz patented digital trigger system. With digital triggering, signal measurement and triggering take place in a common path, whereas with older analog trigger architectures, incoming signals are split and fed to a measurement and a trigger path. Digital triggers offer numerous advantages.

Adjustable digital trigger filters


Use the up to 18-bit HD mode for triggering to reduce measurement system noise. The digital trigger architecture makes it possible to adapt the cutoff frequency of the digital lowpass filter to the signal to be measured. Conventional oscilloscopes limit triggering on filtered waveforms, on the R&S®MXO the same filter settings can be used for both the trigger signal and the measurement signal. As a result, noise on the trigger signal can be suppressed, for instance while simultaneously capturing and displaying the filtered or unfiltered measurement signal.

World's most sensitive trigger

The R&S[®]MXO 4 Series digital trigger is up to 10000 times more sensitive than competing trigger systems. High trigger sensitivity enables users to isolate difficult-to-find small physical layer anomalies in the presence of large signals, accelerating debugging and troubleshooting.

User definable hysteresis

Use automated trigger hysteresis settings or manually enter your values. Unlike using oscilloscopes with analog triggers, R&S[®]MXO 4 Series users have full access to control all trigger hysteresis settings. This provides additional flexibility for determining where to trigger, including how much trigger noise suppression is desired.

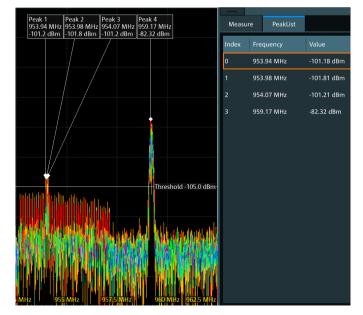
SPECTRUM ANALYSIS SUPERIOR RF MEASUREMENT CAPABILITY

- Pristine RF spectrum
- Dedicated RF controls
- ► RF/time domain views with independent controls
- Gated spectrum for easy correlation between frequency and time

RF insights into your measurements

The R&S[®]MXO 4 Series oscilloscope is engineered with spectrum analysis in mind to bring forward fast and powerful analysis capabilities. It boasts an industry leading spectrum acquisition rate of 45000 FFT/s. This allows capture of spurious spectrum events, especially when doing EMI debugging. The pristine RF characteristics of the instrument deliver great spectrum performance together with a synchronized time domain view.

RF characteristics Spectrum update rate > 45000 FFT/s Sensitivity/noise power density -160 dBm (1 Hz) Noise figure 14 dB 106 dB Dynamic range Spurious-free dynamic range 65 dBc (SFDR) Second harmonic distortion -60 dBc Third harmonic distortion -59 dBc


Frequency analysis setup made easy

You can configure spectrum analysis measurements on the R&S®MXO 4 by simply entering typical parameters: center frequency, span and resolution bandwidth (RBW). The spectrum settings are independent of the time domain settings but the time and frequency domains are time-correlated.

Automatic peak list and max./min. hold measurements

Rohde & Schwarz understands the need for additional tools in spectrum measurements. This is why the R&S[®]MXO 4 includes advanced spectrum analysis functions like max. and min. hold as well as peak list indication as part of the standard features. The values in the peak list are also shown in the diagram, allowing easy correlation and quick insights into the spectrum diagram.

SUPERIOR USER EXPERIENCE ADVANCED USABILITY, EASY DOCUMENTATION, FAST REMOTE CONTROL

Quick access to important tools

The toolbar 1 enables quick access to important tools. Choose from a variety of tools and arrange them with maximum flexibility. The main menu 2 provides access to all instrument settings. The keys 3 left of the main menu key enable activation of the desired signals and provide quick access to analog channel, math function, FFT, arbitrary waveform generator and serial bus analysis settings.

R&S®SmartGrid

Configure your individual waveform layout on the screen using the R&S[®]SmartGrid function **4**. See the fundamental signal parameters in the signal bar **5**. From here, drag&drop waveforms into the R&S[®]SmartGrid and arrange them as desired. Superimposing waveforms is also possible.

Enhanced touchability

The box design **6** implemented for all instrument settings provides enhanced touchability. Tap on any part of a box to change the value of the parameter.

Search function

Easily find any oscilloscope capability you are looking for by simply typing it into the search box **7**.

Save results fast

Save waveforms in various file formats or download them via Ethernet or USB for later analysis with MATLAB[®] or Excel. You can also save screen content, measurement data and reports.

Documentatio	Documentation					
Contents	waveform	complete				
		selection (zoom, cursor, gate, manual)				
		number of acquisitions				
		history memory				
		measurement results				
Format	measurement data	binary, CSV, 1 to 4 channels				
	graphics	PNG, JPG, BMP, TIF, PDF				
Drivers		VXI, LabVIEW, LabWindows/CVI, .NET				
Remote control		web interface, VNC, SCPI				
Languages		choose from 13				

Documentation at the press of a key

Document your measurements quickly:

- Screenshots including waveforms and results
- Clear grid annotations for easy-to-read signal characteristics
- Color-coded labeling to highlight signal portions of interest, e.g. anomalies
- Save waveforms and measurement results in binary or CSV format for signal analysis on a PC

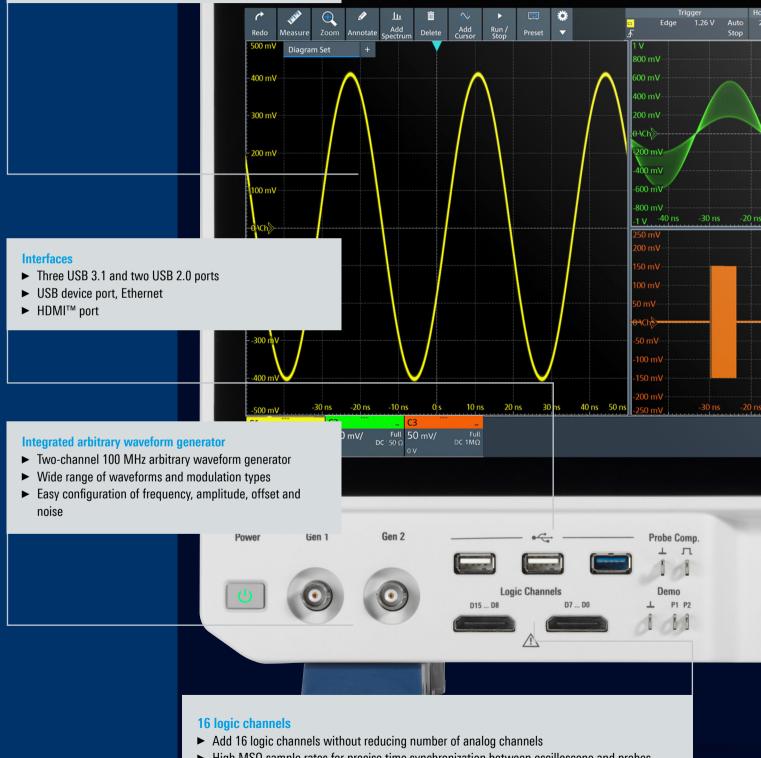
Remote control access: anytime, anywhere

Remotely control your R&S®MXO 4 and view the display on a PC or mobile device. View the same user interface as on the instrument itself. All oscilloscope functions are also available remotely via Ethernet or USB.

Language selection

The R&S[®]MXO 4 Series user interface supports multiple languages. Just a few seconds are needed to switch languages while the instrument is running, making the oscilloscope truly international.

Search Q	Search Q	Search Q	Search Q	Search Q
∿! 垂直軸	∿. Vertical	∿. 수직	∿‡ Vertikal	∿. 垂直
◇ 水平軸	🔆 Horizontal	🔆 수평	🔆 Horizontal	☆ 水平
🏂 トリガ	🏂 Déclenchem	🎢 트리거	🥕 Trigger	▶ 触发
🖾 捕捉	🖾 Acquisition	岱 획득	🔀 Erfassung	🖾 获取
₩ 測定	💉 Mesure	,∲* 측정	🖋 Messung	》 测量
☆ カーソル	∱↓ Curseur	☆ 커서	∱Ų Cursor	☆ 光标
山山 スペクトラム	لللہ Spectre	血, 스펙트럼	ப் Spektrum	山 频谱
f(x) 演算	f(x) Math	f(x) 연산	f(x) Math	f(x) 运算
Apps	Apps	 앱	Apps	Apps
変 ロジック	薺 Logique	奕 로직	盔 Logik	涇 逻辑
拳 設定	🔅 Paramètres	🌣 설정	🔅 Einstellungen	🍄 设置
🗋 セーブ/リコ	Enregistrer/c	🗋 저장/불러오기	Speichern/A	保存/调用
■ <u>し</u> キーボード Power	Clavier Power	IIIII U 키보드 Power	Tastatur Power	IIII し 鍵盘 Power
+ Spec Gen 火ニュー	+ Spec Gen <mark>Menu</mark>	+ Spec Gen 메뉴	+ Spec Gen <mark>Menü</mark>	+ ☴ Spec Gen 菜单



ENHANCED USABILITY

13.3" high resolution, multitouch display

- High resolution: 1920×1080 pixel (Full HD) ►
- Gesture support speeds up scaling and zooming ►
- ► Easy-to-see signal details

► High MSO sample rates for precise time synchronization between oscilloscope and probes

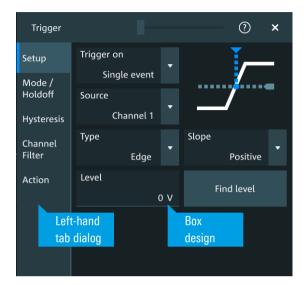
Intuitive front panel design for efficient operation

- ► Fast, direct access to primary instrument settings
- Quickly adjust settings with knobs and keys
- Sectional layout makes finding the right function easy

 \frown C1–C4, Trigger In: 1 M Ω : \leq 300V RMS, \leq 400 V pk; 50 Ω : \leq 5V RMS

Rohde & Schwarz R&S[®]MXO 4 Series Oscilloscope 13

 50 Ω and 1 MΩ path enable support of an even wider range of passive and active probes, including ones from


third parties

FUN TO DRIVE 15-MINUTE LEARNING CURVE, ENHANCED TOUCHABILITY, INTUITIVE NAVIGATION

Superior usability

Extensive user feedback and research into smart device user interface concepts led to the development of the R&S[®]MXO 4 Series user interface:

- The main menu key in the lower right corner of the touchscreen opens a pull-up menu that provides access to all of the oscilloscope's functions. The main menu is positioned within easy reach of the front panel, so that users can quickly switch between the touchscreen and the front panel controls
- The left-hand tab dialogs produce small areas, maximizing the waveform viewing area
- Box design to touch anywhere in a large target area
- The keys in the signal bar on the lower left make it easy to turn on/off signal sources and to adjust the R&S[®]SmartGrid layout
- Unique in the industry is the toolbar for quick access to your favorite tools
- The toolbar can be personalized. lcons, e.g. for measurement, cursors and spectrum display, can be rearranged, added or removed
- Fast one-touch access to trigger setup, horizontal settings and acquisition control directly from the menu bar on the upper right
- Select the icon with the Rohde&Schwarz logo to see current instrument details including LAN IP and firmware version
- The user interface is consistent with that of the R&S®RTO6 and R&S®RTP oscilloscopes (see photos below)



YOUR GO-TO TOOL READY FOR MANY USES


An oscilloscope as flexible as you

Need additional test capability? Customize your R&S®MXO 4 Series oscilloscope with the application software and probes that your applications need.

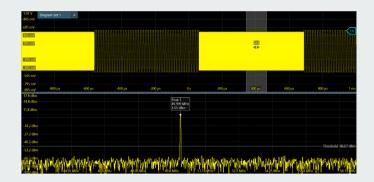
Need digital channels?

Add 16 digital channels with the R&S®MXO4-B1 mixed signal option (MSO). Unlike some other oscilloscopes that force a tradeoff between digital and analog channel usage, the R&S®MXO 4 Series digital channels can be used simultaneously with all analog channels. Simply connect the required R&S®MXO4-B1 probes (one or two) to the R&S®MXO 4 to use the digital channels.

Need configurable waveform generation?

With the R&S®MXO4-B6 arbitrary waveform generator option, you can add two integrated 100 MHz arbitrary waveform generators. Waveforms captured on the oscilloscope can be replayed by the generator and noise can be added to create worst case performance to determine system tolerance. Select from a wide range of available waveshapes or load an arbitrary waveform.

Choose from a wide selection of compatible probes


Rohde & Schwarz provides a broad portfolio of current and voltage probes. All R&S[®]MXO 4 Series oscilloscope channel inputs include a Rohde & Schwarz probe interface connection for Rohde & Schwarz active probes. Many third-party probes are also compatible with the instrument.

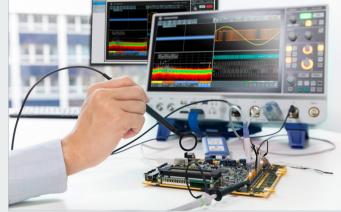
EMI DEBUGGING

Easy navigation in frequency domain

The R&S[®]MXO 4 spectrum function has the familiar interface of a spectrum analyzer. The spectrum measurement setup dialog offers basic spectrum analyzer parameters such as start and stop frequency and resolution bandwidth. In spectrum mode, the R&S[®]MXO 4 time domain settings are unaffected. This makes navigation in the frequency domain an easy task. The maximum FFT capture bandwidth corresponds to the R&S[®]MXO 4 Series bandwidth, allowing a quick overview of all of a DUT's emissions from 0 Hz to 1.5 GHz.

Gated spectrum for correlated time and frequency analysis

With the gated spectrum function, it is possible to restrict spectrum analysis to a user-defined region of the captured time domain signal. Excessive spectral emissions can be correlated to dedicated time periods in a signal. Typical applications include the correlation of unwanted emissions with fast switching edges in switched-mode power supplies or with data transfers on bus interfaces. Having identified the problem, the design engineer can easily check the effectiveness of remedies such as blocking capacitors or reduced rise/fall times by observing the level change of the spectral emission.


Ultra-fast spectrum acquisitions for detecting random and spurious spectrum events

The R&S[®]MXO 4 Series architecture is optimized in terms of hardware and software to leverage the powerful MXO-EP ASIC capabilities to deliver fast and responsive spectrum captures. This is critical in detecting random and spurious emissions that are otherwise hidden due to the blind time in oscilloscope acquisitions. Spectrum analysis includes max. hold, min. hold and average functionality to keep track of spectrum events that occur during testing. These important test receiver functions come standard with the R&S[®]MXO 4 Series spectrum function.

The right setup with the right probes

Rohde & Schwarz offers the compact R&S®HZ-15 near-field probe set, which is particularly helpful for EMI debugging of embedded designs. The most compact probe in this set allows capturing near-field emissions from single circuit lines. The R&S®HZ-15 covers the frequency range from 30 MHz to 3 GHz. With reduced sensitivity, it can also be used below 30 MHz. The optional R&S®HZ-16 preamplifier provides 20 dB gain in the frequency range from 100 kHz to 3 GHz, in case higher sensitivity is needed.

LOGIC ANALYSIS

Logic analysis enabled by default

The R&S[®]MXO 4 Series oscilloscopes have the R&S[®]MXO4-B1 mixed signal option (MSO) hardware built into every instrument. The MSO option provides the logic probes required for using the 16 digital channels.

See more signal details with fast sample rate and deep memory

With a sample rate of 5 Gsample/s, the R&S®MXO 4 Series oscilloscope provides high time resolution of 200 ps for all digital channels. This sample rate is available over the entire memory depth of 400 Mpoints per channel. The mixed signal option offers comprehensive trigger capabilities to detect critical events such as narrow glitches or certain logical patterns.

Analysis of low speed serial buses with digital channels

Today, high speed interfaces are often combined with low speed control or programming buses in a single device. You can use the digital channels of the R&S[®]MXO4-B1 option to trigger and decode low speed serial protocols such as SPI and I²C with the appropriate protocol options. All protocol analysis tools for the analog channels, such as decode table and search, are also available for the digital channels. Trigger on protocol details such as start, address and data in order to focus on dedicated events.

Diagram Set 1 +		
		A
Λ	A such the balance of the two states of the states of the states of the balance of the balance of the states of	Cu1 ΔY:14.17 mV
	Mosi Mosi	
SB1 SPI MOSI	4 9D A 0 8A 4E 6 C8 CA 0 3 A 71 5C 8 2 8A 8C 2 2 6 4 80 8 h D C h h F D 3 h n 0 8 h h 7 7 4 C h	
DO		
D1		
D2 -525 μs -400 μs -200 μs	0 s 200 μs 400 μs 600 μs 800 μs 1 ms	1.2 ms 1.48 ms
Index State Start Count	MOSI values MISO vali SPI details C1 X1 41.638139 µs X2 905.12474 µs Y1: 5.4 m	V Y2: 19.5 mV
1 Incomplete -12.499 μs 0 2 Incomplete 577.506 0	489D AD0C 8 Index MOSI MISO 28 8A8C 272 dx: 863.4866 μs 1/dx: 1.1580956 kHz dy: 14.2 n	nV dy/dx: 16 V*Hz

SERIAL BUS ANALYSIS

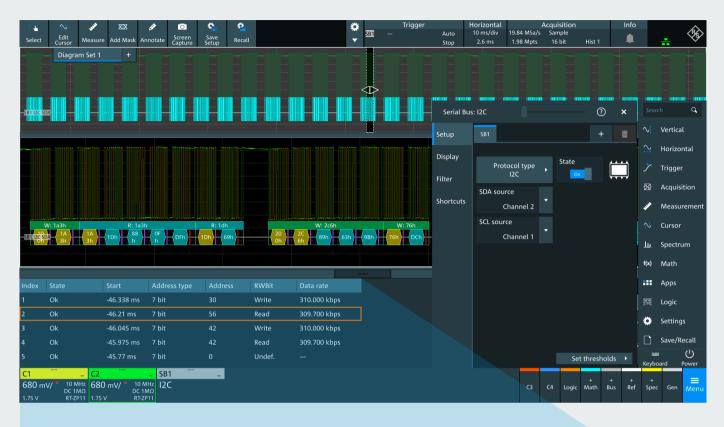
Dual-path protocol analysis

With the R&S[®]MXO 4 Series, you can experience protocol analysis innovation. Traditional oscilloscopes typically capture data packets in the decoding path using the same sample rate as in the waveform path.

The R&S[®]MXO 4 Series offers dual-path protocol analysis. You can set the instrument sample rate for the waveform path, and the oscilloscope will automatically use another internal decoupled sample rate for the decoding path. Even with very slow sample rates, the protocol data is correctly decoded. With conventional oscilloscopes, decoding would not be possible due to undersampling.

Capture more data packets with deep memory

Need to capture long time periods? You can use the R&S®MXO 4 Series extended memory to capture more data packets. With a memory depth of up to 800 Mpoints, the R&S®MXO 4 can capture long periods of time where causes and effects are widely apart. During the entire capture, signal details are time-correlated with packet content for fast debugging.


			Address type	Address		
	Ok	-47.161 ms	7 bit		Write	310.000 kbps
	Ok	-47.034 ms	7 bit	56	Read	309.700 kbps
3	Ok	-46.869 ms	7 bit	42	Write	310.000 kbps
4	Ok	-46.799 ms	7 bit	42	Read	309.700 kbps
	Ok	-46.594 ms	7 bit		Undef.	
	Ok	-46.537 ms	10 bit	930	Write	443.800 kbps
	Ok	-46.305 ms	7 bit		Write	310.000 kbps
	Ok	-46.231 ms	10 bit	419	Write	442.400 kbps
	Ok	-46.159 ms	10 bit	419	Read	442.900 kbps
	Ok	-45.99 ms	7 bit		Read	310.000 kbps
	Ok	-45.885 ms	10 bit	710	Write	442.900 kbps
	Ok	-45.717 ms	7 bit	118	Write	309.700 kbps
	Ok	-45.609 ms	10 bit		Write	442.400 kbps
14	Ok	-45.503 ms	10 bit		Read	443.400 kbps
I2C det	ails					
Index			Ack bit			
1	EBh	-46.738 ms	Ack			
2	56h	-46.705 ms	Ack			
	DBh	-46.672 ms	Ack			
	B7h	-46.639 ms	No ack			

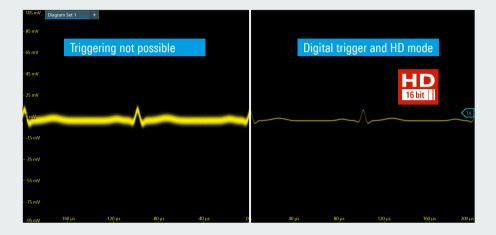
Trigger and decode packages

Option	Description	Buses
R&S®MXO4-K510	low speed serial buses	I ² C/SPI/RS-232/RS-422/RS-485/UART
R&S®MXO4-K520	automotive buses	CAN/CAN FD/CAN XL/LIN

Individual screen setup

Zoom in and out on the decoded protocol data using the vertical and horizontal control knobs or using your fingers on the touchscreen. Use the R&S[®]SmartGrid function to rearrange the windows displayed on the screen to best fit your viewing preferences. The decoded bus data can be overlaid on the captured signal and/or displayed in a separate window.

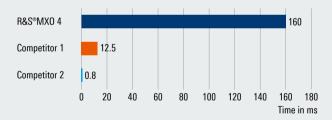
Index	State	Start	Address type	Address	RWBit	Data rate
1	Ok	-46.338 ms	7 bit	30	Write	310.000 kbps
2	Ok	-46.21 ms	7 bit	56	Read	309.700 kbps
3	Ok	-46.045 ms	7 bit	42	Write	310.000 kbps
4	Ok	-45.975 ms	7 bit	42	Read	309.700 kbps
5	Ok	-45.77 ms	7 bit	0	Undef.	
C1	-	C2	_ SB1	-		
680 m	N/ [▲] 10 MHz DC 1MΩ	680 mV/ [*] 10 M	120			
1.75 V		1.75 V RT-ZP				


POWER ANALYSIS

See power signal details with up to 18 bit resolution

Even the smallest signal details of a highly dynamic signal matter for power measurements, for example when verifying $R_{DS(on)}$ for a MOSFET. The HD mode of the R&S®MXO 4 Series oscilloscope increases the vertical resolution up to 18 bit so that previously unseen signal details become visible and can be measured. The oscilloscope also offers adjustable digital filters that allow noise suppression resulting in sharper waveforms with more signal details.

Digital trigger for enhanced debugging capabilities


With up to 18 bit vertical resolution, the R&S®MXO 4 Series digital trigger architecture enables triggering on the smallest vertical variation sampled. The R&S®MXO 4 trigger system offers sensitivity of 0.0001 div and is adjustable to factor in different trigger requirements, for example to avoid false triggering on noise. It is also possible, with the digital trigger, to adapt the filter cutoff frequency only on the trigger path while maintaining the original waveform for viewing and measurements.

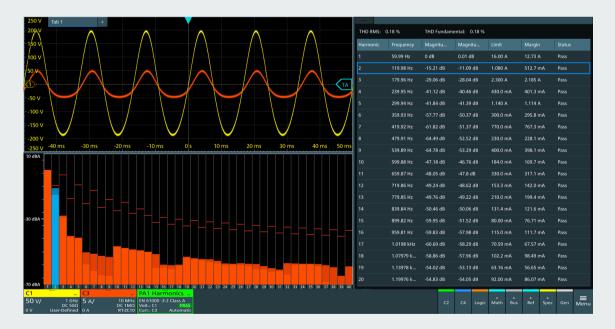
Maintaining fast sample rates with deepest memory

Analyzing power up/power down and transient behavior of power supplies requires high sample rates and long recording times. With up to 800 Mpoints of memory, highest in its class, the R&S®MXO 4 Series oscilloscope can record long periods of time while maintaining high sample rates of up to 5 Gsample/s.

Acquisition time (at 5 Gsample/s)

Extensive probe portfolio: high voltage and current probes

The Rohde&Schwarz portfolio of high voltage probes includes active differential probes for voltages up to 6000 V (peak). These probes offer exceptional common mode rejection over a broad frequency range. Rohde&Schwarz current probes enable accurate, nonintrusive measurements of DC and AC currents. Different models are available to measure currents in the range from 1 mA to 2000 A with a bandwidth of up to 120 MHz.


Characterizing input power quality

Measuring AC circuit power quality can be tedious due to the numerous calculations required to determine the real, apparent and reactive power. An oscilloscope is ideal for this work because it provides a clear view of the wave-form characteristics between voltage and current, allowing engineers to quickly identify and resolve problems. The R&S®MXO4-K31 enables power quality measurements and provides concurrent analysis of three pairs of voltage and current sources.

Harmonic current analysis in line with standards

Different standards for limiting the harmonic current must be met in AC power supplies. Identifying distortion from harmonic content is tedious without a proper tool. The R&S®MXO4-K31 includes current harmonic analysis to help test in line with all common standards. Users can setup three concurrent harmonic measurements.

R&S®MX04-K31 power analysis option

Power quality

Current harmonics

active, apparent and reactive power, crest factor and phase angle

THD RMS and fundamental functions, in line with EN 6100-3-2 classes A, B, C, D, MIL-STD-1399 and RTCA DO-160

More analysis functions to be added in future.

FREQUENCY RESPONSE ANALYSIS

Creating Bode plots with the R&S®MXO 4 Series

Perform low frequency response analysis

The R&S[®]MXO4-K36 frequency response analysis (FRA) option lets you perform low frequency response analysis on your oscilloscope easily and quickly. It measures the frequency response of a variety of electronic devices, including passive filters and amplifier circuits. For switched-mode power supplies, it measures the control loop response (CLR) and power supply rejection ratio (PSRR).

The FRA option uses the oscilloscope's built-in arbitrary waveform generator to create stimulus signals in the range from 10 mHz to 100 MHz. Measuring the voltage ratios of the stimulus signal and the output signal of the DUT at each test frequency, the oscilloscope plots gain and phase logarithmically.

Features and functionalities

Amplitude profiles

The R&S[®]MXO4-K36 allows users to configure amplitude profiles for the generator output level. This helps optimize signal-to-noise ratio (SNR) at different frequencies when measuring CLR and PSRR. Users can also load lookup tables for generator settings.

Improved resolution and marker support

Users can define the number of points per decade to set the required resolution and sweep time. Markers can be placed on the traces with a table showing the corresponding parameter values. An auto placement function makes it easy for users to determine the phase and gain margin.

Parallel display of time domain

Parallel display of time and frequency domain allows users to monitor if an injected signal causes distortion that leads to measurement errors. These effects are hard to spot from just the Bode plot. Using the time domain window together with the Bode plot significantly facilitates adjusting the amplitude profile to the optimal level.

Result table

The measurement result table displays the frequency, gain and phase shift for each measured point. The markers and result table provide interactive display of the selected information. For reporting purposes, screenshots, result table or both can be saved to a USB device.

Broad probe portfolio

Accurate CLR and PSRR characterization is highly dependent on choosing the right probes since the peak-to-peak amplitudes of both the input and output voltages can be very low at some test frequencies. These small amplitudes could be buried in the oscilloscope's noise floor and in the switching noise of the DUT. We recommend the low-noise R&S®RT-ZP1X 38 MHz bandwidth 1:1 passive probes to reduce the attenuation error and provide the best SNR.

POWER INTEGRITY

Debugging and characterizing power rails

Accurately measure ripple and PARD

As power rail tolerance levels get smaller, it becomes increasingly difficult to measure power ripple accurately. The R&S®MXO 4 oscilloscope's low inherent noise enables accurate power integrity measurements in the millivolt range. The fast update rate of the R&S®MXO 4 Series allows you to quickly see infrequent and worst-case ripple as well as periodic and random disturbances (PARD).

Power rail characterization with high fidelity probes

Wide bandwidth, high sensitivity, very low noise and extralarge DC offset make the R&S®RT-ZPR an excellent probe for characterizing power rails. With a bandwidth of up to 4 GHz, excellent sensitivity due to the 1:1 attenuation ratio and low noise, the R&S®RT-ZPR excels at precise ripple measurements. Coupled with the oscilloscope's powerful spectrum analysis capabilities, the R&S®RT-ZPR probes can be used to isolate PARD. An integrated high-precision 18-bit DC voltmeter (R&S®ProbeMeter) delivers an instantaneous DC voltage readout in parallel.

Measuring small AC voltages riding on large DC offsets

Offering ±60 V offset range, the R&S®RT-ZPR power rail probes allow you to focus on small ripples on the power rail's DC voltage. Whether you need to zoom in on a 1 V or much higher DC level, the probe provides the required offset while maintaining lowest vertical scale settings. Together with the extremely low-noise frontend of the R&S®MXO 4 oscilloscope and 18 bit vertical resolution, the large DC offset provides accelerated insight into the power integrity of your design.

Find coupled sources with fast spectrum function

With the industry's most capable spectrum function in an oscilloscope, you can analyze the behavior of switched-mode power supplies or quickly scan for sources coupled onto your power rail. The R&S®MXO 4 Series oscilloscope spectrum algorithm allows you to analyze the spectrum independently of the time domain settings. This quickly provides a comprehensive picture of your power rails.

Using spectrum analysis with time gating to effectively find coupled sources that contribute to power rail noise.

INTEGRATED ARBITRARY WAVEFORM GENERATOR

Compact and configurable

Two-channel 100 MHz arbitrary waveform generator

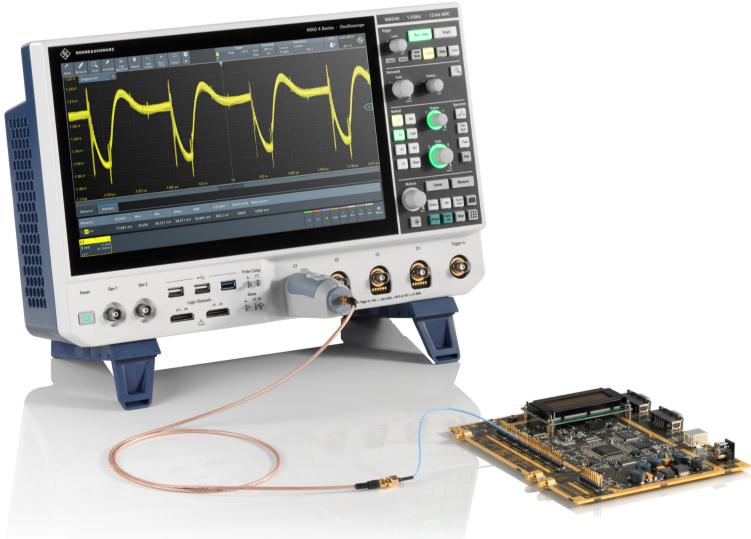
Equipped with the R&S®MXO4-B6 option, the R&S®MXO 4 oscilloscope offers a fully integrated two-channel 100 MHz arbitrary waveform generator. With up to 625 Msample/s and 16 bit resolution, the generators are suitable for implementing prototype hardware and for educational purposes. The integrated generators provide both standard and arbitrary waveforms as stimulus signals to the DUT. They can be operated as function and/or modulation generators and also support the sweep mode.

Wide range of waveforms and modulation types

The integrated arbitrary waveform generators deliver sine, square/pulse, ramp, triangle, sine cardinal (sinc), arbitrary and noise waveforms as stimulus signals to the DUT. For all waveforms, you can set the frequency, amplitude, offset and noise and also add bursts.

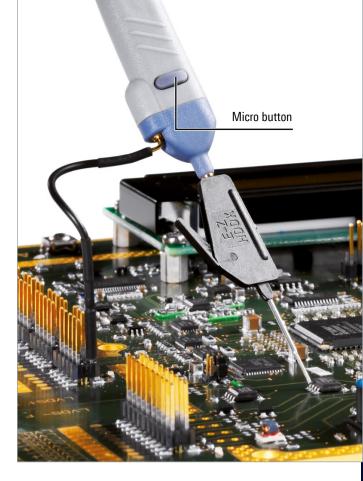
The modulation feature supports AM, FM, FSK and PWM modulations for sine, rectangle, triangle and ramp waveshapes.

Arbitrary waveform generator specifications	
Analog output	2 channels
Bandwidth	100 MHz
Amplitude	high impedance: 10 mV to 10 V (peak-to-peak), 50 Ω: 5 mV to 5 V (peak-to-peak)
Arbitrary waveform length	1 sample to 40 Msample per channel
Sample rate	1 sample/s to 312.5 Msample/s
Vertical resolution	16 bit
Operating modes	 function and arbitrary waveform generator (DC, sine, square/pulse, triangle, ramp, inverse ramp, sinc, arbitrary) modulation (AM, FM, FSK, PWM) frequency sweep noise


EXTENSIVE PROBE PORTFOLIO THE RIGHT PROBE FOR THE BEST MEASUREMENT

Extensive range of probes for all measurement tasks

A complete portfolio of high-quality passive and active probes covers all measurement tasks. With an input impedance of 1 M Ω , the active probes only put a minimum load on the signal source operating point. The active single-ended probes offer a very wide dynamic range, e.g. 60 V (V_{pp}) at 1 GHz, even at high frequencies, preventing signal distortion.


Complete portfolio for power measurements

The portfolio of dedicated power measurement probes includes active and passive probes for different voltage and current ranges – from μ A to kA and from μ V to kV. Dedicated power rail probes help detect even small and sporadic distortions on DC power rails.

Micro button for convenient instrument control

The situation is familiar to every engineer: You have carefully positioned the probe on the DUT and you want to start measuring, but you do not have a free hand. The micro button on Rohde&Schwarz active probes solves the problem. It is conveniently located close to the probe tip, and you can assign it different functions such as run/stop, autoset and adjust offset.

High voltage differential probes

The R&S[®]RT-ZHD series high voltage differential probes provide an excellent common mode rejection ratio (CMRR) over a wide bandwidth of up to 200 MHz and can safely measure up to 6000 V peak voltages. These probes exhibit exceptionally low noise, making them ideal for switching power analysis.

Like all active probes from Rohde & Schwarz, the R&S®RT-ZHD probes are equipped with the R&S®ProbeMeter, a high-precision DC voltmeter offering 0.1% accuracy while ensuring 0.5% gain accuracy and very low measurement drift. They also have an integrated 5 MHz analog filter, an audible common mode voltage overrange indicator and a micro button to give users full awareness of and control over the probe measurements.

High voltage differential probes for switching power analysis measurements.

Rohde & Schwarz has a comprehensive probe portfolio to meet every probing need.

For more information, see product brochure "Probes and accessories for Rohde&Schwarz oscilloscopes" (PD 3606.8866.12)

Passive probes included as standard (38 MHz to 700 MHz) R&S®RT-ZP11, R&S®RT-ZP1X

Passive broadband probes (8 GHz) R&S°RT-ZZ80 Passive probes come standard with every Rohde&Schwarz oscilloscope. They are low cost, general purpose probing solutions for a broad range of applications.

These are an economical yet powerful alternative to active probes for measuring high speed signals on low impedance lines. Their input impedance is low and remains practically constant over the entire bandwidth. They feature extremely low input capacitance, very low noise and high linearity.

Active single-ended broadband probes (1 GHz to 6 GHz) R&S°RT-ZS10L, R&S°RT-ZS10E, R&S°RT-ZS10, R&S°RT-ZS20, R&S°RT-ZS30, R&S°RT-ZS60

Active differential broadband probes

R&S®RT-ZD10, R&S®RT-ZD20, R&S®RT-ZD30,

(1 GHz to 4.5 GHz)

R&S®RT-7D40

A very high dynamic range and exceptionally low offset and gain errors combined with the right accessories make these probes ideal for use with Rohde&Schwarz oscilloscopes.

چې 🍫

R&S[®]RT-ZD40: browser adapters to easily vary the pin offset

R&S®RT-ZA15 external attenuator for R&S®RT-ZD20/-ZD30

A flat frequency response and high input impedance with low input capacitance permit precise measurements on differential signals while keeping the load on the DUT low. The high common mode rejection over the entire probe bandwidth ensures high immunity to interference. Special browser adapters allow flexible contacting with high signal fidelity.

Wide bandwidth, high sensitivity, very low noise and extra-large DC offset make these probes an excellent tool for characterizing power rails. The integrated highprecision DC voltmeter (R&S[®]ProbeMeter) provides instantaneous DC voltage readout.

High voltage probes

(100 MHz to 400 MHz; ±750 V to ±6000 V) R&S°RT-ZH03, R&S°RT-ZH10, R&S°RT-ZH11, R&S°RT-ZD01, R&S°RT-ZHD07, R&S°RT-ZHD15, R&S°RT-ZHD16, R&S°RT-ZHD60 The Rohde & Schwarz portfolio of high voltage probes includes passive single-ended and active differential probes for voltages up to 6000 V (peak). Different models allow measurements in up to CAT IV environments. Differential probes provide exceptional common mode rejection over a wide bandwidth.

Current probes

(20 kHz to 120 MHz; ±1 mA to ±2000 A) R&S°RT-ZC02, R&S°RT-ZC03, R&S°RT-ZC05B, R&S°RT-ZC10, R&S°RT-ZC10B, R&S°RT-ZC15B, R&S°RT-ZC20, R&S°RT-ZC20B, R&S°RT-ZC30, R&S°RT-ZC31

EMC near-field probes (30 MHz to 3 GHz) R&S°HZ-15, R&S°HZ-17 Rohde & Schwarz current probes enable accurate, non-intrusive measurements of DC and AC currents. Different models are available to measure currents in the range from 1 mA to 2000 A with a bandwidth of up to 120 MHz. Current probes are available with the Rohde & Schwarz probe interface or a BNC connector for an external power supply.

Powerful E and H near-field probes for the frequency range from 30 MHz to 3 GHz with an optional preamplifier expand the application range of the R&S®MXO 4 Series oscilloscope to include EMI debugging.

AND THERE IS SO MUCH MORE ... AN OSCILLOSCOPE THAT EVOLVES WITH YOUR NEEDS

Grows with your needs - fully software based upgrades

The R&S®MXO 4 Series flexibly adapts to evolving requirements for your project. The R&S®MXO 4 oscilloscopes come equipped with all hardware and software options. To enable a desired option, all you have to do is purchase a software license and activate the function or upgrade via keycode. This includes bandwidth upgrades up to 1.5 GHz, mixed signal option, memory upgrade, arbitrary waveform generator, serial bus triggering and decoding, and frequency response analysis. This makes retrofitting very easy.

Regular firmware improvements

Regular firmware updates add new functionality to the R&S[®]MXO 4 Series oscilloscopes. Download the latest firmware version at <u>www.rohde-schwarz.com</u> and use a USB storage device or LAN connection for installation. This will keep your R&S[®]MXO 4 Series oscilloscope up to date.

Multilingual support: choose among thirteen languages

The user interface and online help of the R&S[®]MXO 4 Series oscilloscopes support thirteen languages (English, German, French, Spanish, Italian, Portuguese, Czech, Polish, Russian, Simplified and Traditional Chinese, Korean and Japanese). You can change the language in just a few seconds while the instrument is running.

Safe transport and easy rack mounting

An extensive selection of storage and transportation accessories means the R&S[®]MXO 4 Series oscilloscopes are always fully protected and easy to transport. The rackmount kit allows easy installation of the oscilloscope in integrated environments.

Accessories	
Front cover	R&S®MXO4-Z1
Soft case	R&S®MXO4-Z3
Transit case, with trolley function	R&S®MXO4-Z4
19" rackmount kit	R&S [®] ZZA-MXO4
VESA mounting interface	100 mm × 100 mm VESA standard pattern on the rear of all instruments

FROM PRESALES TO SERVICE. AT YOUR DOORSTEP.

The Rohde & Schwarz network in over 70 countries ensures optimum on-site support by highly qualified experts.

User risks are reduced to a minimum at all project stages:

- ► Solution finding/purchase
- Technical startup/application development/integration
- ► Training
- ► Operation/calibration/repair

OSCILLOSCOPE PORTFOLIO

Neta yearRes FIT 1000Res FIT 2000Res FIT 2000Res FIT 2000Notati yearNot Not Not Not Not Not Not Not Not Not					
<table-row><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-row>		R&S®RTH1000	R&S®RTC1000	R&S®RTB2000	R&S®RTM3000
Ninder standardJack Part Part Part Part Part Part Part Part	Vertical system				
ACC escalaria system advisation system ad	Bandwidth ¹⁾	60/100/200/350/500 MHz	50/70/100/200/300 MHz	70/100/200/300 MHz	100/200/350/500 MHz/1 GHz
system achievature Volum	Number of channels	2 plus DMM/4	2	2/4	2/4
YeakPercent with the second secon		10 bit; 16 bit	8 bit; 16 bit	10 bit; 16 bit	10 bit; 16 bit
Heinden produce in the intervence in the intervence in the intervence intervence in the intervence interv	V/div, 1 MΩ	2 mV to 100 V	1 mV to 10 V	1 mV to 5 V	500 μV to 10 V
Springing tare per hannel (in Sample's)1.2 (2 channels interievoud) kit channels interievoud)2.8 : 5 / 2 channels interievoud)Massinging tare per hannel (is channel interievoud)1.2 (2 channels interievoud)2.8 : 5 / 2 channels interievoud)Massing tare per hannel (is channel interievoud)Mapints; 2 Mopints (2 channel interievoud)0 Mopints; 20 Mopints (2 channel interievoud)Segmented mennory (is channel interievoud)	V/div, 50 Ω	-			500 µV to 1 V
Samplage per brane (a Gample) (a Gample) (a Gample) (a Gample) (b Gample)2.5 (2 channels interieved) (2.5 kpcints (2.5 kpcints)2.5 (2 channels interieved) (2.5 kpcints)2.5 (2 channels interieved)2.5 (2 channels interieved)Signam (2.5 kpcints)standard, 50 Mpcints0 mpcints; 20 Mpcints0 mpcints; 20 Mpcints0 mpcints; 20 Mpcints0 Mpcints; 20 Mpcints)0 Mpcints;	Horizontal system				
Maximum monoly dyspins channeline in the priority showing in the priority in the prior		2.5 (2-channel model);	1; 2 (2 channels interleaved)		2.5; 5 (2 channels interleaved)
Acquisition rate (in waveforms/g)Booo1000 50000 (300000 in fast segmented memory mode?) 61000 (200000 in fast segmented memory mode?)Reger V Typesdigital of digital channelanaloganaloganaloganalog V V Sensitivity $ V$ V V V V V V Number of digital channel 0 0 0 0 0 0 0 0 0 0 Auster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Auster 0		(4-channel model); 250 kpoints (2-channel model);	1 Mpoints; 2 Mpoints	10 Mpoints; 20 Mpoints	40 Mpoints; 80 Mpoints
in wordorms/s)boudoinerted memory mode*memory mode*memory mode*HigterTypesdigitalanaloganaloganalogSensitivityat 1 mV/div: > 2 divat 1 mV/div: > 2 divMumber of digital hout881616Mumber of digital hout881616AnaptiImmory mode*1616Mumber of digital hout881616AnaptiImmory mode*1616Mumber of digital hout161616AnaptiImmory mode*1616Mumber of digital hout161616AnaptiImmory mode*1616Mumber of digital hout161616Mumber of digital houtImmory mode*1616Mumber of digital houtImmory mode*1616AnaptiImmory mode*Immory mode*1616Mumber of digital houtImmory mode*161616AnaptiServer of the mask10101010Serial protocols triggeringImmory mode*Immory mode*Immory mode*Immory mode*Serial protocols triggeringImmory mode*Immory mode*Immory mode*Immory mode*Application*Immory mode*Immory mode*Immory mode*Immory mode*Immory mode*Application*ImportImportImportImportImportImportApplicat	Segmented memory	standard, 50 Mpoints	-	option, 320 Mpoints	option, 400 Mpoints
TypesigitalnalognalognalogSensitivy $ -$ Mased optioned $ -$ Mumber of digital channels $ -$ Mast estIoleance maskIoleance maskIoleance maskIoleance maskMathematicsIoleance maskIoleance maskIoleance maskIoleance maskSerial protocols triggering $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}$ Serial protocols triggering $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}$ Serial protocols triggering $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}$ $r_{S,SPI, UART/RS-232/RS-422}Serial protocols triggeringr_{S,SPI, UART/RS-232/RS-422}r_{S,SPI, UART/RS-232/RS-422}r_{S,SPI, UART/RS-232/RS-422}Seri$		50 000	10 000		-
Sensitivityat 1 mV/div: > 2 divat 1 mV/div: > 2 divSensitivityat 1 mV/div: > 2 divat 1 mV/div: > 2 divMixed signal option (MSO)Mumber of digital channels*881616AnaticMask testolerance masktolerance masktolerance masktolerance maskAnthematicselementaryelementarybasic (math on math)basic (math on math)Sarial protocols triggering and decoding "PC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINApplications ***high-resolution frequency oounter, advanced spectrum anatysis, harmonics analysis 	Trigger				
Sensitivity $ at$ mV/div: a div at mV/div: a divMixed signal option (MSO)Number of digital channels*881616AnayciMask testIoferance maskIoferance maskIoferance maskIoferance maskIndemontarioIoferance maskIoferance maskIoferance maskIoferance maskIndeforationsIoferance maskIoferance maskIoferance maskIoferance maskIndeforationsIndeforationsIoferance maskIoferance maskIoferance maskIndeforationsIoferance maskIoferance maskIoferance maskIoferance maskIndeforationsIoferance maskIoferance maskIoferance maskIoferance maskIndeforationsIoferance maskIoferance m	Turper	digital	analog	analog	applog
Nixed signation (NSO)Image: Normal Section 1Normal Section 1Normal Section 1Number of digital channels881616AnatysiSection 2Section 2Section 2Section 2Make testIolerance masktolerance masktolerance masktolerance maskMathematicselementaryelementarybasic (math on math)basic (math on math)Secial protocols triggering and compare section 2FC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINFC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINFC, SPI, UART/RS-232/RS-422// RS-485, CAN, LINApplications ^(1,2) bigital voltmeter (DVM), comp ponent tester, fast Fourier transform (FFD) ser exciptingower, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency counter, advanced spectrum sonalysis, sure scriptingdigital voltmeter (DVM), comp ponent tester, fast Fourier transform (FFD) form (FFT)section 2Nower, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysis analysis, harmonics analysis, later 110.1* touchscreen, 1280 × 800 pixel10.1* touchscreen, 1280 × 800 pixelCompliance testing ^(1,2) Touchscreen, 200 × 480 pixel6.5*, 154010.1* touchscreen, 1280 × 800 pixel10.1* touchscreen, 1280 × 800 pixelComer tasterTouchscreen, 200 × 480 pixel285 × 175 × 14030 × 220 × 15230 × 220 × 152Weight in kg2.41.72.53.3	турез	ugitai	analog	analog	analog
Number of digital channels881616AnalysisMask testIolerance maskIolerance maskIolerance maskIolerance maskIolerance maskIolerance maskMathematicselementaryelementarybasic (math on math)basic (math on math)basic (math on math)Serial protocols triggering and decoding ''FC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENTFC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINFC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, PS, MIL-STD-1553, ARINC 429Applications ''.'Iolerase server triggering and sector counter, advanced spectrum analysis, harmonics analysis uer scriptingdigital voltmeter (DVM), com form (FFT)digital voltmeter (DVM), fast fourier transform (FFT), frequency response analysis and spectrogram, frequency		-	-	at 1 mV/div: > 2 div	at 1 mV/div: > 2 div
AnalysisVerture<					
Mask testtolerance masktolerance masktolerance masktolerance masktolerance maskMathematicselementaryelementarybasic (math on math)basic (math on math)Serial protocols triggering in decoding " F_C , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT F_C , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN SA85, CAN, LIN SENT F_C , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN SA85, CAN, LIN Sent F_C , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN SA85, CAN, LIN Sent F_C , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN Sent Sent F_C , SPI, UART/RS-232/RS-422/RS-485, RS-485, CAN, LIN Sent Sent F_C , SPI, UART/RS-232/RS-422/RS-485, Sent F_C , SPI, UART/RS-232/RS-422/RS-485, Sent Sent Sent F_C , SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, FS, MIL-STD-1553, ARINC429Applications "Lahigh-resolution frequency counter, advanced spectrum analysis, harmonics analysis, tore (FT) more (FT) fm (FT) fm (FT) fm (FT) fm (FT) frequency response analysis (ser scripting F_C , SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, FS, MIL-STD-1553, ARINC429Complance testing "La F_C , SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, FS, MIL-STD-1553, ARINC429Complance testing "La </td <td>, and the second second</td> <td>8</td> <td>8</td> <td>16</td> <td>16</td>	, and the second	8	8	16	16
Mathematicselementaryelementarybasic (math on math)basic (math on math)Serial protocols triggering and decoding " P_{C}^{C} , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT P_{C}^{C} , SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN P_{C}^{C} , SPI, UART/RS-232/RS-422/R					
Serial protocols triggering and decoding "PC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENTPC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, PS, MIL-STD-1553, ARINC 429Applications "N."high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scriptingdigital voltmeter (DVM), com ponent tester, fast Fourier transform (FFT), frequency response analysis frequency response analysispower, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysis (M 480 pixel)Compliance testing "N."Size and resolution5"65", 65", 610, 480 pixel10.1" touchscreen, 10.1" touchscreen, 10.2" touchscreen, 10.2" touchscreen, 10.2" touchscreen, 10.2" touchscreen, 10.4" touchs					
Serial protocols triggering and decoding "RS-485, CAN, LIN, CAN FD, SENTPC, SP, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SP, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SP, UART/RS-232/RS-422/ RS-485, CAN, LINPC, SP, UART/RS-232/RS-422/ CAN, LIN, PS, MIL-STD-1553, ARINC 429Applications "I. 7)high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scriptingdigital voltmeter (DVM), com- ponent tester, fast Fourier transform (FFT), fast Sourier tran	Mathematics	elementary	elementary	basic (math on math)	basic (math on math)
Applications ^{11, 21} counter, advanced spectrum analysis, harmonics analysis, user scriptingdigital voltmeter (DVM), com- ponent tester, fast Fourier transform (FFT), frequency response analysispower, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis and spectrogram, frequency response analysisCompliance testing ^{11, 21} Display and operationSize and resolution7" touchscreen, 800 × 480 pixel6.5", 640 × 480 pixel10.1" touchscreen, 1280 × 800 pixel10.1" touchscreen, 1280 × 800 pixelGeneral dataDimensions in mm (W × H × D)201 × 293 × 74285 × 175 × 140390 × 220 × 152390 × 220 × 152Weight in kg2.41.72.53.3		RS-485, CAN, LIN, CAN FD,			
Display and operation Display and operation Unit State of the second se	Applications ^{1), 2)}	counter, advanced spectrum analysis, harmonics analysis,	ponent tester, fast Fourier trans-	fast Fourier transform (FFT),	
Number of the solution 7" touchscreen, 800 × 480 pixel 6.5", 640 × 480 pixel 10.1" touchscreen, 1280 × 800 pixel 10.1" touchscreen, 1280 × 800 pixel General data Unit Solution 201 × 293 × 74 285 × 175 × 140 390 × 220 × 152 390 × 220 × 152 Weight in kg 2.4 1.7 2.5 3.3		-	-	-	-
Size and resolution 800 × 480 pixel 640 × 480 pixel 1280 × 800 pixel 1280 × 800 pixel General data Dimensions in mm (W × H × D) 201 × 293 × 74 285 × 175 × 140 390 × 220 × 152 390 × 220 × 152 Weight in kg 2.4 1.7 2.5 3.3	Display and operation		0.51		
Dimensions in mm (W × H × D) 201 × 293 × 74 285 × 175 × 140 390 × 220 × 152 390 × 220 × 152 Weight in kg 2.4 1.7 2.5 3.3	Size and resolution				
Weight in kg 2.4 1.7 2.5 3.3	Dimensions in mm	201 × 293 × 74	285 × 175 × 140	390 × 220 × 152	390 × 220 × 152
		2.4	1.7	2.5	3.3
		lithium-ion, > 4 h	-	-	-

¹⁾ Upgradeable. ²⁾ Requires an option.

R&S®MXO 4	R&S®MXO 5	R&S®RT06	R&S®RTP
200/350/500 MHz/1/1.5 GHz 4	100/200/350/500 MHz/1/2 GHz 4/8	600 MHz/1/2/3/4/6 GHz 4	4/6/8/13/16 GHz
4	4/0	4	4
12 bit; 18 bit	12 bit; 18 bit	8 bit; 16 bit	8 bit; 16 bit
500 μV to 10 V	500 μV to 10 V	1 mV to 10 V (HD mode: 500 µV to 10 V)	
500 µV to 1 V	500 µV to 1 V	1 mV to 1 V (HD mode: 500 μV to 1 V)	2 mV to 1 V (HD mode: 1 mV to 1 V)
2.5; 5 (2 channels interleaved)	5 on 4 channels; 2.5 on 8 channels (2 channels interleaved)	10; 20 (2 channels interleaved in 4 GHz and 6 GHz model)	20; 40 (2 channels interleaved)
standard: 400 Mpoints; max. upgrade: 800 Mpoints ²⁾	standard: 500 Mpoints max. upgrade: 1 Gpoints ²⁾	standard: 200 Mpoints/800 Mpoints; max. upgrade: 1 Gpoints/2 Gpoints	standard: 100 Mpoints/400 Mpoints; max. upgrade: 3 Gpoints
standard: 10 000 segments; option: 1 000 000 segments	standard: 10000 segments; option: 1000000 segments	standard	standard
> 4 500 000	> 4500000 on 4 channels	1 000 000 (2 500 000 in ultra-segmented memory mode)	750 000 (3200 000 in ultra-segmented memory mode)
digital	digital	digital (includes zone trigger)	advanced (includes zone trigger), digital trigger (14 trigger types) with real-time deembedding ²), high speed serial pattern trigger including 8/16 Gbps clock data recovery (CDR) ²)
0.0001 div, across full bandwidth,	0.0001 div, across full bandwidth,	0.0001 div, across full bandwidth,	0.0001 div, across full bandwidth,
user controllable	user controllable	user controllable	user controllable
16	16	16	16
	10		
		user configurable, hardware based	user configurable, hardware based
basic (math on math)	basic (math on math)	advanced (formula editor, Python interface)	advanced (formula editor, Python interface)
I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN	I²C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN	I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429, FlexRay™, CAN FD, MIPI RFFE, USB 2.0/HSIC, MDIO, 8b10b, Ethernet, Manchester, NRZ, SENT, MIPI D-PHY, SpaceWire, MIPI M-PHY/UniPro, CXPI, USB 3.1 Gen 1, USB-SSIC, PCIe 1.1/2.0, USB Power Delivery, Automotive Ethernet 100/1000BASE-T1	I ² C, SPI, UART/RS-232/RS-422/RS-485, SENT, CAN, LIN, CAN FD, MIL-STD-1553, ARINC 429, SpaceWire, USB 2.0/HSIC/PD, USB 3.1 Gen 1/Gen 2/SSIC, PCIe 1.1/2.0/3.0, 8b10b, MIPI RFFE, MIPI D/M-PHY/UniPro, Automotive Ethernet 100/1000BASE-T1, Ethernet 10/100BASE-TX, MDIO, Manchester, NRZ
power, digital voltmeter (DVM), frequency response analysis	power, digital voltmeter (DVM), frequency response analysis	power, advanced spectrum analysis and spectrogram, jitter and noise decomposition, clock data recovery (CDR), I/Q data and RF analysis (R&S [®] VSE), deembedding, TDR/TDT analysis	advanced spectrum analysis and spectro- gram, jitter and noise decomposition, real-time deembedding, TDR/TDT analysis, I/Q data and RF analysis (R&S®VSE), advanced eye diagram
-		see data sheet (PD 5216.1640.22)	see data sheet (PD 3683.5616.22)
13.3" touchscreen, 1920 × 1080 pixel (Full HD)	15.6" touchscreen, 1920 × 1080 pixel (Full HD)	15.6" touchscreen, 1920 × 1080 pixel (Full HD)	13.3" touchscreen, 1920 × 1080 pixel (Full HD)
414 × 279 × 162	445 × 314 × 154	450 × 315 × 204	441 × 285 × 316
6	9	10.7	18
-	-	-	-

SPECIFICATIONS OF BASE UNIT

Vertical system: analog channels		
Input channels		4 channels
Input impedance		50 Ω ± 1.5%, 1 MΩ ± 1% 12 pF (meas.)
Analog bandwidth (–3 dB)	at 50 Ω input impedance	
	R&S®MXO 4	≥ 200 MHz
	R&S [®] MXO 4 with R&S [®] MXO4-B243 option	≥ 350 MHz
	R&S [®] MXO 4 with R&S [®] MXO4-B245 option	≥ 500 MHz
	R&S [®] MXO 4 with R&S [®] MXO4-B2410 option	≥ 1 GHz
	R&S [®] MXO 4 with R&S [®] MXO4-B2415 option	\geq 1.5 GHz ¹⁾
	at 1 MΩ input impedance	
	R&S®MXO 4	≥ 200 MHz (meas.)
	R&S [®] MXO 4 with R&S [®] MXO4-B243 option	≥ 350 MHz (meas.)
	R&S [®] MXO 4 with R&S [®] MXO4-B245 option	≥ 500 MHz (meas.)
	R&S [®] MXO 4 with R&S [®] MXO4-B2410 option	\geq 700 MHz (meas.) ²⁾
	R&S [®] MXO 4 with R&S [®] MXO4-B2415 option	\geq 700 MHz (meas.) ²⁾
Additional bandwidth filters available up to instrument bandwidth		1 GHz, 500/350/200/100/50/20 MHz (meas.)
Rise/fall time (calculated)	10% to 90% at 50 Ω	
	R&S®MXO 4	< 1.75 ns
	R&S [®] MXO 4 with R&S [®] MXO4-B243 option	< 1 ns
	R&S®MXO 4 with R&S®MXO4-B245 option	< 700 ps
	R&S®MXO 4 with R&S®MXO4-B2410 option	< 350 ps
	R&S®MXO 4 with R&S®MXO4-B2415 option	< 234 ps
Vertical resolution		12 bit, up to 18 bit for high-definition (HD) mode
Input sensitivity	at 50 Ω	0.5 mV/div to 1 V/div, entire analog bandwidth supported for all input sensitivities
	at 1 MΩ	0.5 mV/div to 10 V/div, entire analog bandwidth supported for all input sensitivities
DC gain accuracy	offset and position set to 0 V, after self-alignmen	t
	input sensitivity > 5 mV/div	±1% of full scale
	input sensitivity $\leq 5 \text{ mV/div}$ to $\geq 1 \text{ mV/div}$	±1.5% of full scale
	input sensitivity < 1 mV/div	±2.5% of full scale
Input coupling	at 50 Ω	DC
	at 1 MΩ	DC, AC
Maximum input voltage	at 50 Ω	5 V (RMS), 30 V (V_)
	at 1 MΩ	300 V (RMS), 400 V (V _p), derates at 20 dB/decad to 5 V (RMS) above 250 kHz
	at 1 M Ω with R&S°RT-ZP11 passive probe	400 V (RMS), 1650 V (V _p), 300 V (RMS) (CAT II); for derating and details, see R&S®RT-Zxx Standard Probes specifications (PD 3607.3851.22)
Position range		±5 div
Offset range at 50 Ω	input sensitivity	
	100 mV/div to 1 V/div	±20 V
	0.5 mV/div to < 100 mV/div	±5 V
Offset range at 1 M Ω	input sensitivity	
	800 mV/div to 10 V/div	±200 V
	80 mV/div to < 800 mV/div	±50 V
	0.5 mV/div to < 80 mV/div	\pm (5 V – input sensitivity × position)
Offset accuracy		\pm (0.35% × net offset + 0.5 mV + 0.1 div × input sensitivity (net offset = offset – position × input sensitivity)

 $^{\eta}$ 1.5 GHz analog bandwidth in interleave mode with 5 Gsample/s real-time sampling rate.

²⁾ With R&S®RT-ZP11 passive probe.

Vertical system: analog channels ±(DC gain accuracy ×

DC measurement accuracy

noise using high-definition (HD) mode or waveform averaging or a combination of both

Channel-to-channel isolation (each channel with same input sensitivity) inp

input frequency within instrument bandwidth

±(DC gain accuracy × |reading – net offset| + offset accuracy)

> 60 dB (1:1000)

Vertical system: a	analog channels						
RMS noise floor ³⁾							
At 50 Ω (meas.)	Input sensitivity	Analog bandwid	dth (–3 dB)				
		20 MHz	200 MHz	350 MHz	500 MHz	1 GHz	
	0.5 mV/div	20 µV	43 µV	47 μV	50 μV	98 µV	
	1 mV/div	22 µV	45 µV	50 µV	54 µV	104 µV	
	2 mV/div	25 µV	52 µV	56 µV	61 µV	116 µV	
	5 mV/div	43 µV	72 µV	77 μV	84 µV	152 µV	
	10 mV/div	76 µV	118 µV	120 µV	131 µV	238 µV	
	20 mV/div	148 µV	219 µV	219 µV	241 µV	436 µV	
	50 mV/div	360 µV	508 µV	492 µV	543 µV	1.01 mV	
	100 mV/div	747 µV	1.17 mV	1.19 mV	1.30 mV	2.47 mV	
	200 mV/div	1.40 mV	2.13 mV	2.14 mV	2.34 mV	4.43 mV	
	500 mV/div	3.47 mV	4.91 mV	4.80 mV	5.27 mV	10.13 mV	
	1 V/div	6.88 mV	9.71 mV	9.47 mV	10.41 mV	19.96 mV	
At 1 MΩ (meas.)	Input sensitivity	Analog bandwidth (-3 dB)					
		20 MHz	100 MHz	200 MHz	350 MHz	500 MHz	
	0.5 mV/div	28 µV	40 µV	42 μV	47 μV	51 µV	
	1 mV/div	28 µV	40 µV	46 µV	50 µV	53 µV	
	2 mV/div	30 µV	43 µV	49 µV	54 µV	58 µV	
	5 mV/div	44 µV	58 µV	67 μV	71 µV	78 µV	
	10 mV/div	73 µV	92 µV	109 µV	109 µV	120 µV	
	20 mV/div	138 µV	169 µV	199 µV	198 µV	218 µV	
	50 mV/div	344 µV	442 µV	525 µV	529 µV	586 µV	
	100 mV/div	739 µV	959 μV	1.13 mV	1.14 mV	1.24 mV	
	200 mV/div	1.40 mV	1.74 mV	2.06 mV	2.07 mV	2.27 mV	
	500 mV/div	3.47 mV	4.43 mV	5.22 mV	5.28 mV	5.75 mV	
	1 V/div	7.11 mV	8.92 mV	10.44 mV	10.53 mV	11.49 mV	
	2 V/div	13.83 mV	16.9 mV	19.87 mV	19.56 mV	21.38 mV	
	5 V/div	34.84 mV	44.32 mV	52.43 mV	53.39 mV	57.97 mV	
	10 V/div	57.16 mV	68.58 mV	80.66 mV	78.53 mV	85.46 mV	

Vertical system: digital channels Input channels 16 logic channels (D0 to D15) arranged in two logic probes with 8 channels Arrangement of input channels each; assignment of logic probes to channels (D0 to D7 and D8 to D15) displayed on probes Input impedance 100 k Ω \pm 2 % || ~4 pF (meas.) at probe tips signal with minimum input voltage swing and Maximum input frequency 400 MHz (meas.) hysteresis setting "normal" Maximum input voltage ±40 V (V_) 500 mV (V_{pp}) (meas.) Minimum input voltage swing Threshold groups D0 to D3, D4 to D7, D8 to D11 and D12 to D15 Threshold level ±8 V in 25 mV steps range CMOS 5.0 V, CMOS 3.3 V, CMOS 2.5 V, TTL, predefined ECL, PECL, LVPECL Threshold accuracy threshold level between ±4 V ±(100 mV + 3% of threshold setting) Comparator hysteresis normal, robust, maximum

³⁾ HD mode active for bandwidths \leq 500 MHz.

Horizontal system selectable between 200 ps/div and 10000 s/div, Timebase range time per div settable to any value within range Channel-to-channel deskew range between analog channels ±100 ns between digital channels ±100 ns Reference position 0% to 100% of measurement display area Horizontal position range (trigger offset range) max. +(memory depth/current sampling rate) min. -5000 s Modes normal Channel-to-channel skew between analog channels < 100 ps (meas.) between digital channels < 500 ps (meas.) Timebase accuracy after delivery/calibration, at +23°C ±0.2 ppm during calibration interval ±1 ppm corresponds to time error between two edges of equal polarity on same acquisition and channel; signal amplitude greater than 5 div, measurement $\pm (0.20/\text{real-time sampling rate} + \text{timebase}$ Delta time accuracy threshold set to 50%, vertical gain 10 mV/div or accuracy × |reading|) (peak) (meas.) greater; rise time lower than four sampling periods; waveform acquired in real-time mode Acquisition system max. 5 Gsample/s on 2 channels, Sampling rate analog channels (real time) max. 2.5 Gsample/s on 4 channels analog channels (interpolated) max. 5 Tsample/s digital channels max. 5 Gsample/s on each channel > 4500000 waveforms/s Waveform acquisition rate max. Trigger rearm time min. < 21 ns 400 Mpoints with 4 active channels (single-shot)

standard	400 Mpoints with 4 active channels (single-shot), 400 Mpoints with 2 active channels (continuous)
with R&S®MXO4-B108 option	800 Mpoints with 2 active channels (single-shot), 800 Mpoints with 1 active channel (continuous)
sample	middle sample in decimation interval
peak detect	largest and smallest sample in decimation interval
average	average value of samples in decimation interval
number of averaged waveforms	2 to 16777215
envelope	envelope of acquired waveforms
real-time	max. sampling rate depending on ADC
interpolated time	enhancement of sampling resolution by interpolation; max. equivalent sampling rate is 5 Tsample/s
	linear, sin(x)/x, sample&hold
continuous recording of waveforms in acquisition memory without interruption due to visualization	
max. real-time waveform acquisition rate	> 4600000 waveforms/s
min. blind time between consecutive acquisitions	< 21 ns
	with R&S®MXO4-B108 option sample peak detect average number of averaged waveforms envelope real-time interpolated time continuous recording of waveforms in acquisition max. real-time waveform acquisition rate min. blind time between consecutive

High-definition (HD) mode			
General description	leading to reduced noise. Because of t	The high-definition mode increases the bit resolution of waveform signals by using digital filtering, leading to reduced noise. Because of the R&S®MXO 4 Series digital trigger concept, signals with higher bit resolution are used as inputs to the trigger.	
Bit resolution	bandwidth, at 5 Gsample/s	bit resolution	
	1 kHz to 10 MHz	18 bit	
	100 MHz	16 bit	
	200 MHz	15 bit	
	500 MHz	14 bit	
Real-time sampling rate	all models	max. 5 Gsample/s on 2 channels, max. 2.5 Gsample/s on 4 channels	

⁴⁾ The maximum available memory depth depends on the bit resolution of the acquired data and, therefore, on the acquisition system settings such as decimation mode, use of waveform arithmetics and high-definition (HD) mode.

Trigger system		
		analog channels (C1 to C4),
Trigger sources		digital channels (D0 to D15),
Trigger level range		trigger input, serial bus ±5 div from center of screen
Trigger modes		auto, normal, single, n single
		0.0001 div, from DC to instrument bandwidth for
Trigger sensitivity		all vertical scales
Trigger jitter	full-scale sine wave of frequency set to –3 dB bandwidth	< 1 ps (RMS) (meas.)
Coupling mode	standard	same as selected channel
	HF reject	cutoff frequency selectable from 1 kHz to 500 MHz
	LF reject	attenuates frequencies < 50 kHz
Trigger hysteresis	modes	auto (default setting) or manual
	sensitivity	0.0001 div, from DC to instrument bandwidth for all vertical scales
Holdoff range	time	100 ns to 10 s, fixed and random
Main trigger modes		
Edge	triggers on specified edge (positive, negative or e	ither) and level
Glitch	triggers on glitches of positive, negative or either width	polarity that are shorter or longer than a specified
	glitch width	200 ps to 1000 s
Width	triggers on positive or negative pulse of specified outside a specified range	width; width can be shorter, longer, inside or
	pulse width	200 ps to 1000 s
	triggers on pulse of positive, negative or either po	
Runt	a second threshold before crossing the first one a longer, inside or outside a specified range	
	runt pulse width	200 ps to 1000 s
Window	triggers when signal enters or exits a specified vo or outside the voltage range for a specified period	Itage range; triggers also when signal stays inside
Timeout	triggers when signal stays high, low or unchange	
	timeout	0 ps to 1000 s
later of	triggers when the time between two consecutive	edges of the same polarity (positive or negative) is
Interval	shorter, longer, inside or outside a specified range	
	interval time	200 ps to 1000 s
Slew rate	triggers when the time required by a signal edge to toggle between user-defined upper and lower voltage levels is shorter, longer, inside or outside a specified range; edge slope may be positive, negative or either	
	toggle time	0 ps to 1000 s
	triggers on setup time and hold time violations be	etween clock and data present on any two input
Setup & hold	channels; monitored time interval may be specified by the user in the range from -100 s to $+100$ s around a clock edge and must be at least 200 ps wide	
Pattern	triggers when a logical combination (AND, NAND period of time shorter, longer, inside or outside a	
	triggers when a logical combination (AND, NAND	
State	edge (positive, negative or either) in one selected	
Advanced trigger modes		
Sequence trigger (A/B/R trigger)	triggers on B event after occurrence of A event; d interval; an optional R event resets the trigger seq	
	A event	edge, glitch, width, runt, window, timeout, interval, slew rate
	B event	edge, glitch, width, runt, window, timeout, interval, slew rate
	R event	edge, glitch, width, runt, window, timeout, interval, slew rate
Serial bus trigger	optional	see dedicated triggering and decoding options in Ordering information in this product brochure
Trigger input	input impedance	50 Ω (meas.) or 1 M Ω (meas.) 11 pF (meas.)
	max. input voltage at 50 Ω	30 ∨ (V _p)
	max. input voltage at 1 $\mbox{M}\Omega$	300 V (RMS), 400 V (V _p), derates at 20 dB/decade to 5 V (RMS) above 250 kHz
	trigger level	±5 V

. .

	sensitivity	
	input frequency ≤ 500 MHz	300 mV (peak-to-peak) (meas.)
	input coupling	AC, DC (50 Ω and 1 M Ω)
	trigger filters	HF reject (attenuates frequencies > 50 kHz, LF reject (attenuates frequencies < 50 kHz), noise reject
	trigger modes	edge (positive, negative or either)
Trigger output	functionality	A pulse is generated for each event triggering signal acquisition.
	output voltage	0 V to 5 V (nom.) at high impedance, 0 V to 2.5 V (nom.) at 50 Ω
	pulse width	selectable between 16 ns and 50 ms
	pulse polarity	low active or high active
	output delay	depends on trigger settings

Spectrum analysis		
General description	Spectrum analysis allows signal analysis in the frequency domain.	
Spectrum	sources channel 1, channel 2, channel 3, channel 4	
	setting parameters	center frequency, frequency span, resolution bandwidth (automatic or manual), gate position, gate width, vertical scaling, vertical position
	scaling	dBm, dBV, dBµV, V (RMS)
	span	1 Hz to 1.8 GHz ⁵⁾
	resolution bandwidth (RBW)	$span/4 \ge RBW \ge span/6000$
	windows	flat top, Hanning, Hamming, Blackman, rectangular, Kaiser Bessel, Gaussian
	trace types	normal, max. hold, min. hold, average
	max. real-time waveform acquisition rate	> 40 000 waveforms/s
Gate	delimits the display region used for spectrum analysis	
Peak list	The values in the peak list are also shown in the diagram to allow easy correlation.	

RF characteristics		
Sensitivity/noise density	at 1 GHz (measurement of power spectral density at 1 GHz at input sensitivity 2 mV/div, corresponding to -30 dBm input range of the oscilloscope, using spectrum analysis with center frequency 1 GHz, span 500 kHz, RBW 3 kHz)	–160 dBm (1 Hz) (meas.)
Noise figure	at 1 GHz (calculated based on the noise power density above)	14 dB (meas.)
Dynamic range	measured for a 1 GHz input carrier with level –3 dBm at input of oscilloscope, using spectrum analysis with center frequency 1 GHz, span 2 MHz, RBW 400 Hz at +20 MHz from center frequency	106 dB (meas.)
Absolute amplitude accuracy	0 Hz to 1.2 GHz	±1 dB (meas.)
Spurious-free dynamic range (excluding harmonics)	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	65 dBc (meas.)
Second harmonic distortion	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	–60 dBc (meas.)
Third harmonic distortion	measured for a 250 MHz input carrier with level –3 dBm at input sensitivity 50 mV/div, using spectrum analysis with center frequency 900 MHz, span 1.8 GHz, RBW 300 kHz	–59 dBc (meas.)

 $^{\rm 5)}\,$ The stop frequency depends on the analog bandwidth of the instrument.

Automatic measurements	measurements on acquired waveforms (input channels), math waveforms, reference waveforms	amplitude, high, low, maximum, minimum, peak- to-peak, mean, RMS, sigma, positive overshoot, negative overshoot, area, rise time, fall time, posi- tive pulse width, negative pulse width, period, frequency, positive duty cycle, negative duty cycle, delay, phase, burst width, pulse count, edge count, pulse train, positive switching, nega- tive switching, cycle area, cycle mean, cycle RMS, cycle sigma, setup, hold, setup/hold time, setup/hold ratio, slew rate rising, slew rate falling, delay to trigger
	gate	delimits the display region evaluated for auto- matic measurements
	reference levels	user-configurable vertical levels define support structures for automatic measurements
	statistics	displays maximum, minimum, mean, standard deviation and measurement count for each auto- matic measurement
	number of active measurements	16
Cursor measurements	available cursors	up to two cursor sets on screen, each set with two horizontal and two vertical cursors
	target waveforms	acquired waveforms (input channels), math waveforms, reference waveforms, XY diagrams
	operating modes	vertical measurements, horizontal measurements or both; vertical cursors either placed manually or locked to waveform
Waveform math		
Wavelorm math General features	number of math equations	up to 5
General realures	number of reference waveforms	up to 4
	sources	channel 1, channel 2, channel 3, channel 4, math waveforms 1 to 4, reference waveforms 1 to 4

Functions	operators	add, subtract, multiply, divide, absolute value, square, square root, integrate, differentiate, \log_{10} , $\log_{2^{\prime}}$ reciprocal, invert, lowpass, highpass, rescale (a*x+b)
	filters	lowpass, highpass
	filter types	Gaussian, rectangular
	gate	delimits the display region used for waveform maths

Display characteristics	
Display types	y(t), zoom, spectrum
Display configuration (waveform layout)	The display area can be split into separate diagram areas by dragging and dropping signal icons for the desired waveforms into the R&S [®] SmartGrid. Each diagram can hold any number of signals. Diagrams can be stacked on top of each other and later accessed via dynamic tabs (Tab 1, etc.).
Signal icons	Each active waveform is represented by a signal icon on the signal bar; the signal icon displays the individual vertical and acquisition settings.
Toolbar	Enables quick access to important functions; allows direct setting of their most common parameters in a simple menu and provides access to more detailed parameter settings in the main menu. The toolbar can be individually configured to include the user's preferred tools.
Upper menu bar	Displays trigger, horizontal and acquisition system settings; allows quick access to these settings.
Main menu	Provides access to all instrument settings in a compact menu structure.
Axis labeling	The x-axis and y-axis are labeled with values and physical unit.
Diagram labeling	Diagrams may be individually labeled with a descriptive, user-defined name.
Diagram layout	The grid, crosshair, axis labeling and diagram labeling can be switched on and off separately.
Persistence	50 ms to 50 s, or infinite
Zoom	vertical and horizontal; touch interface simplifies resize and drag operations on zoom window
Signal colors (waveform coding)	predefined or user-defined color tables for persistence display

Acquisition memory	automatic	automatic setting of seg	ment size and sample rate
	manual	user-defined setting of s	egment size and sample rate
Memory segmentation	function	memory is divided into s	segments for signal acquisition
	number of segments	record length	segments ⁶⁾ (up to)
		1 kpoints	1048575
		2 kpoints	524287
		5 kpoints	262143
		10 kpoints	131071
		20 kpoints	65535
		50 kpoints	32767
		100 kpoints	16383
		200 kpoints	9361
		500 kpoints	4095
		1 Mpoints	2113
		2 Mpoints	1056
		5 Mpoints	427
		10 Mpoints	213
		20 Mpoints	106
		50 Mpoints	41
		100 Mpoints	20
		200 Mpoints	9
		400 Mpoints	4
		800 Mpoints ⁷⁾	2
	Segmentation is available f analysis.	or all analog and digital channe	els, protocol decoding and spectrum
Fast segmented mode		continuous recording of waveforms in acquisition memory without interruption due to visualization; for blind time between consecutive acquisitions, see "Acquisition system"	
History mode	function	The history mode is an always-on function and provides acces past acquisitions in the segmented memory.	
	timestamp resolution	1 ns	
	history player		orms; repetition possible; adjustable spee kt/previous segment; numerical segment
	analysis options	overlay all segments, av	erage all segments, envelope all segmen

Inputs and outputs

Front

Channel inputs		BNC; for details, see "Vertical system"
	probe interface	auto detection of passive probes, Rohde&Schwarz probe interface for active probes
Trigger input		BNC; for details, see "Trigger system"
	probe interface	auto detection of passive probes
Arbitrary waveform generator outputs (requires R&S®MXO4-B6 option)		BNC; for details, see R&S®MXO4-B6, arbitrary waveform generator, demo lugs and GND lug
Digital channel inputs	D15 to D8, D7 to D0	interfaces for R&S®RT-ZL04 logic probe
Probe compensation output	signal shape	rectangle, $V_{low} = 0$ V, $V_{high} = 3.3$ V, amplitude 3.3 V (V_{pp}) ± 5% (meas.)
	frequency	1 kHz ± 1% (meas.)
Ground jack		connected to ground
USB interfaces		$1 \times \text{USB}$ 3.1 Gen 1 port, type A, 2 × USB 2.0 high speed port, type A
Rear		
Trigger output		BNC; for details, see "Trigger system"
USB interfaces		2 × USB 3.1 Gen 1 port, type A, 1 × USB 3.1 Gen 1 port, type B
LAN interface		RJ-45 connector, supports 10/100/1000BASE-T

⁶⁾ With R&S®MXO4-B108 memory option. The maximum number of segments depends on the number of active channels and the bit resolution of the acquired data and, therefore, on the acquisition system settings such as decimation mode, use of waveform arithmetics and high-definition (HD) mode. The maximum number of segments without the R&S®MXO4-B108 memory option is limited to 10000. ⁷⁾ With R&S®MXO4-B108 memory option.

Inputs and outputs		
External monitor interface		HDMI™, 1920 × 1080 pixel at 60 Hz, output of oscilloscope display
Reference input	connector	BNC
	impedance	50 Ω (nom.)
	input frequency	10 MHz (±20 ppm)
	sensitivity	≥ −10 dBm into 50 Ω , ≤ 10 dBm at 10 MHz
Reference output	connector	BNC
	impedance	50 Ω (nom.)
	output signal	10 MHz (specified with timebase accuracy), 8 dBm (nom.)
Security slot		for standard Kensington lock
VESA mounting interface		100 mm × 100 mm VESA standard pattern
Right side		
Ground jack		connected to ground

General data		12.2" LC TET color display with consolitive
Display	type	13.3" LC TFT color display with capacitive touchscreen
	resolution	1920 × 1080 pixel (Full HD)
Temperature		
Temperature range	operating temperature range	0°C to +50°C
	storage temperature range	-40°C to +70°C
		in line with MIL-PRF-28800F, section 4.5.5.1.1.7 class 3, tailored to +45°C for operation
Climatic resistance	damp heat	+25°C/+50°C at 85% relative humidity, cyclic, in line with IEC60068-2-30
Altitude		
Operating		up to 3000 m above sea level
Nonoperating		up to 4600 m above sea level
Mechanical resistance		
Vibration	sinusoidal	5 Hz to 150 Hz, max. 1.8 g at 55 Hz; 0.5 g from 55 Hz to 150 Hz, in line with EN 60068-2-6
		10 Hz to 55 Hz, in line with MIL-PRF-28800F, section 4.5.5.3.2, class 3
	random	8 Hz to 500 Hz, acceleration 1.2 g (RMS), in line with EN 60068-2-64
		5 Hz to 500 Hz, acceleration 2.058 g (RMS), in line with MIL-PRF-28800F, section 4.5.5.3.1, class 3
Shock		40 g shock spectrum, in line with MIL-STD-810 method no. 516.6, procedure I
		30 g functional shock, half sine, duration 11 ms in line with MIL-PRF-28800F, section 4.5.5.4.1
Electromagnetic compatibility (EMC	;)	
RF emissions		in line with CISPR 11/EN55011, group 1, class / (for a shielded test setup); instrument complies with emission requirement stipulated by EN55011, EN61326-1 and EN61326-2-1 class A, making it suitable for use in industrial environments
Immunity		in line with IEC/EN61326-1 table 2, immunity te requirements for equipment used in industrial environments ⁸⁾
Certifications		VDE, _c CSA _{us} , KC
Calibration interval		1 year
Power supply		
AC supply		100 V to 240 V \pm 10% at 50 Hz to 60 Hz and 400 Hz \pm 5%, max. 2.3 A to 1.3 A, in line with MIL-PRF-28800 applies 2.5

 $^{\scriptscriptstyle 8)}~$ Test criterion is displayed noise level within ±1 div for an input sensitivity of 5 mV/div.

section 3.5

General data

Power consumption

Safety

max. 210 W in line with IEC61010-1, EN61010-1, CAN/CSA-C22.2 No. 61010-1, UL 61010-1

Mechanical data

Dimensions Weight

Rackmount height

 $\mathsf{W} \times \mathsf{H} \times \mathsf{D}$

without options, nominal with R&S®ZZA-MXO4 rackmount kit

414 mm × 279 mm × 162 mm (16.3 in × 10.99 in × 6.38 in) 6.0 kg (13.23 lb) 6 HU

ORDERING INFORMATION

Designation	Туре	Order No.			
R&S®MXO 4 Series, base unit					
Oscilloscope, 200 MHz, 4 channels	R&S®MXO 4	1335.5050.04			
Base unit (including standard accessories: 700 MHz passive probe (10:1) per channel, accessories bag, quick start guide, power cord)					
Choose your bandwidth upgrade					
Upgrade of R&S®MXO 4 to 350 MHz bandwidth	R&S®MXO4-B243	1335.4276.02			
Upgrade of R&S®MXO 4 to 500 MHz bandwidth	R&S®MXO4-B245	1335.4299.02			
Upgrade of R&S®MXO 4 to 1 GHz bandwidth	R&S®MXO4-B2410	1335.4318.02			
Upgrade of R&S®MXO 4 to 1.5 GHz bandwidth	R&S®MXO4-B2415	1335.4330.02			
Choose your options					
Mixed signal option for R&S®MXO 4 Series with 16 digital channels	R&S®MXO4-B1	1335.4130.02			
Arbitrary waveform generator, 100 MHz, 2 analog channels	R&S®MXO4-B6	1335.4147.02			
Memory upgrade to 800 Mpoints on 2 channels	R&S®MXO4-B108	1335.5772.02			
Low speed serial triggering and decoding (I ² C/SPI/UART/RS-232/RS-422/RS-485)	R&S®MXO4-K510	1335.5195.02			
Automotive serial triggering and decoding (CAN/CAN FD/CAN XL/LIN)	R&S®MXO4-K520	1335.5550.02			
Power analysis	R&S®MXO4-K31	1335.5566.02			
Frequency response analysis	R&S®MXO4-K36	1335.5572.02			
Application bundle with the following options: R&S®MXO4-K510, R&S®MXO4-K520, R&S®MXO4-K31, R&S®MXO4-K36, R&S®MXO4-B6	R&S®MXO4-PK1	1335.5237.02			
Choose your additional probes					
Passive probes: single-ended					
700 MHz, 10 MΩ, 10:1, 400 V, 9.5 pF, 2.5 mm	R&S®RT-ZP11	1803.0005.02			
500 MHz, 10 MΩ, 10:1, 400 V, 9.5 pF, 2.5 mm	R&S®RT-ZP10	1409.7550.00			
500 MHz, 10 MΩ, 10:1, 300 V, 10 pF, 5 mm	R&S®RT-ZP05S	1333.2401.02			
38 MHz, 1 MΩ, 1:1, 55 V, 39 pF, 2.5 mm	R&S®RT-ZP1X	1333.1370.02			
Active broadband probes: single-ended					
1.0 GHz, 10:1, 1 MΩ, BNC interface	R&S®RT-ZS10L	1333.0815.02			
1.0 GHz, 1 MΩ, Rohde&Schwarz probe interface	R&S®RT-ZS10E	1418.7007.02			
1.0 GHz, 1 M Ω , R&S [®] ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZS10	1410.4080.02			
1.5 GHz, 1 M Ω , R&S [®] ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZS20	1410.3502.02			
Active broadband probes: differential					
1.0 GHz, 1 M Ω , R&S [®] ProbeMeter, micro button, including 10:1 external attenuator, 1 M Ω , 70 V DC, 46 V AC (peak), Rohde&Schwarz probe interface	R&S®RT-ZD10	1410.4715.02			
1.5 GHz, 1 M Ω , R&S°ProbeMeter, micro button, Rohde&Schwarz probe interface	R&S®RT-ZD20	1410.4409.02			
Power rail probe					
2.0 GHz, 1:1, 50 kΩ, ± 0.85 V, ± 60 V offset, Rohde&Schwarz probe interface	R&S®RT-ZPR20	1800.5006.02			
High voltage probes: passive					
250 MHz, 100:1, 100 MΩ, 850 V, 6.5 pF	R&S®RT-ZH03	1333.0873.02			
400 MHz, 100:1, 50 MΩ, 1000 V, 7.5 pF	R&S®RT-ZH10	1409.7720.02			
400 MHz, 1000:1, 50 MΩ, 1000 V, 7.5 pF	R&S®RT-ZH11	1409.7737.02			

Designation	Туре	Order No.
ligh voltage probes: differential		
200 MHz, 250:1/25:1, 5 M Ω , 750 V (peak), 300 V (RMS) CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD07	1800.2307.02
00 MHz, 500:1/50:1, 10 MΩ, 1500 V (peak), 1000 V (RMS) CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD15	1800.2107.02
200 MHz, 500:1/50:1, 10 MΩ, 1500 V (peak), 1000 V (RMS) CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD16	1800.2207.02
00 MHz, 1000:1/100:1, 40 MΩ, 6000 V (peak), 1000 V (RMS) CAT III, Rohde&Schwarz probe interface	R&S®RT-ZHD60	1800.2007.02
Current probes		
20 kHz, AC/DC, 0.01 V/A and 0.001 V/A, \pm 200 A and \pm 2000 A, BNC interface	R&S®RT-ZC02	1333.0850.02
00 kHz, AC/DC, 0.1 V/A, 30 A, BNC interface	R&S®RT-ZC03	1333.0844.02
2 MHz, AC/DC, 0.01 V/A, 500 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC05B	1409.8204.02
0 MHz, AC/DC, 0.01 V/A, 150 A (RMS), BNC interface	R&S®RT-ZC10	1409.7750K02
0 MHz, AC/DC, 0.01 V/A, 150 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC10B	1409.8210.02
50 MHz, AC/DC, 0.1 V/A, 30 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC15B	1409.8227.02
00 MHz, AC/DC, 0.1 V/A, 30 A (RMS), BNC interface	R&S®RT-ZC20	1409.7766K02
00 MHz, AC/DC, 0.1 V/A, 30 A (RMS), Rohde&Schwarz probe interface	R&S®RT-ZC20B	1409.8233.02
20 MHz, AC/DC, 1 V/A, 5 A (RMS), BNC interface	R&S®RT-ZC30	1409.7772K02
MC near-field probe set		
Compact probe set for E and H near-field measurements, 30 MHz to 3 GHz	R&S®HZ-15	1147.2736.02
.ogic probe ¹⁾		
100 MHz logic probe, 8 channels	R&S®RT-ZL04	1333.0721.02
Probe accessories		
Accessory set for R&S®RT-ZP11 passive probe (2.5 mm probe tip)	R&S®RT-ZA1	1409.7566.00
Probe power supply for R&S®RT-ZC10/-ZC20/-ZC30 probes	R&S®RT-ZA13	1409.7789.02
External attenuator 10:1, 2.0 GHz, 1.3 pF, 60 V DC, 42.4 V AC (peak), or R&S®RT-ZD20/-ZD30 probes	R&S®RT-ZA15	1410.4744.02
Probe pouch for the logic probes	R&S®RT-ZA19	
Power deskew and calibration test fixture	R&S®RT-ZF20	1800.0004.02
3D positioner with central tensioning knob for easy clamping and positioning of probes span width: 200 mm, clamping range: 15 mm)	R&S®RT-ZA1P	1326.3641.02
Choose your accessories		
ront cover	R&S®MXO4-Z1	1335.4360.02
Soft case	R&S®MXO4-Z3	1335.5589.02
ransit case	R&S®MXO4-Z4	1335.5595.02
9" rackmount kit, 6 HU	R&S [®] ZZA-MXO4	1335.5108.02
/ESA mounting interface	100 mm × 100 mr pattern	m VESA standard

Warranty		
Base unit		3 years
All other items ²⁾		1 year
Service options		
Extended warranty, one year	R&S®WE1	
Extended warranty, two years	R&S®WE2	
Extended warranty with calibration coverage, one year	R&S®CW1	Contact your local Rohde&Schwarz
Extended warranty with calibration coverage, two years	R&S®CW2	sales office.
Extended warranty with accredited calibration coverage, one year	R&S®AW1	
Extended warranty with accredited calibration coverage, two years	R&S®AW2	

¹⁾ The R&S®MXO4-B1 mixed signal option contains two R&S®RT-ZL04 logic probes.

²⁾ For options installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty.

The terms HDMI and HDMI High-Definition Multimedia Interface, and the HDMI Logo are trademarks or registered trademarks of HDMI Licensing, LLC in the United States and other countries.