## **RedLab AI-EXP32**

Analog Input Expansion Module for RedLab 2416 Modules

# **User's Guide**





## **RedLab AI-EXP32**

## Analog Input Expansion Module for RedLab 2416 Modules

**User's Guide** 



Document Revision 2ÈÒ, April, 2011 © Copyright 2011, Meilhaus Electronic GmbH

#### Imprint

#### User's Guide RedLab<sup>®</sup> Series

Document Revision 2ÈÒ Revision Date: April 2011

Meilhaus Electronic GmbH

QĘ ÂĴ[}}^}|æ@c2 D-82GHJ Q∰ậ \* near Munich, Germany http://www.meilhaus.com

© Copyright 2011 Meilhaus Electronic GmbH

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Meilhaus Electronic GmbH.

#### Important note:

All the information included in this user's guide were put together with utmost care and to best knowledge. However, mistakes may not have been erased completely.

For this reason, the firm Meilhaus Electronic GmbH feels obliged to point out that they cannot be take on neither any warranty (apart from the claims for warranty as agreed) nor legal responsibility or liability for consequences caused by incorrect instructions.

We would appreciate it if you inform us about any possible mistakes.

The trademark Personal Measurement Device, TracerDAQ, Universal Library, InstaCal, Harsh Environment Warranty, Measurement Computing Corporation, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation.

Windows, Microsoft, and Visual Studio are either trademarks or registered trademarks of Microsoft Corporation.

LabVIEW is a trademark of National Instruments.

CompactFlash is a registered trademark of SanDisk Corporation.

XBee is a trademark of MaxStream, Inc.

All other trademarks are the property of their respective owners

## **Table of Contents**

| Iardware                                      | . 7 |
|-----------------------------------------------|-----|
| Additional documentation                      | . 7 |
| Jser connectors                               | . 8 |
| Screw terminal pin outs                       | . 9 |
| Expansion connector                           |     |
| Compatible sensors                            | 13  |
| Thermocouple measurement accuracy             |     |
| Analog input DC voltage measurement accuracy: | 13  |

## About this User's Guide

## What you will learn from this user's guide

This user's guide explains how to install, configure, and use the RedLab AI-EXP32 so that you get the most out of its analog input features.

This user's guide also refers you to related documents available on our web site, and to technical support resources.

## Conventions in this user's guide

| For more i               | For more information on                                                                                                                                                                                                                                                                              |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Text present<br>reading. | ted in a box signifies additional information and helpful hints related to the subject matter you are                                                                                                                                                                                                |  |  |  |  |
| Caution!                 | Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.                                                                                                                                                           |  |  |  |  |
| <#:#>                    | Angle brackets that enclose numbers separated by a colon signify a range of numbers, such as those assigned to registers, bit settings, etc.                                                                                                                                                         |  |  |  |  |
| <b>bold</b> text         | <ul><li>Bold text is used for the names of objects on the screen, such as buttons, text boxes, and check boxes. For example:</li><li>1. Insert the disk or CD and click the OK button.</li></ul>                                                                                                     |  |  |  |  |
| <i>italic</i> text       | <i>Italic</i> text is used for the names of manuals and help topic titles, and to emphasize a word or phrase. For example:<br>The <i>Insta</i> Cal installation procedure is explained in the <i>Quick Start Guide</i> .<br><i>Never</i> touch the exposed pins or circuit connections on the board. |  |  |  |  |

## Where to find more information

The following electronic documents provide helpful information relevant to the operation of the RedLab AI-EXP32.

- The *Quick Start Guide* is available on your RedLab CD in the root directory.
- The Guide to Signal Connections is available on your RedLab CD under "ICalUL\Documents".
- The Universal Library User's Guide is available on your RedLab CD under "ICalUL\Documents".
- The Universal Library Function Reference is available on your RedLab CD under "ICalUL\Documents".
- The Universal Library for LabVIEW<sup>TM</sup> User's Guide is available on your RedLab CD under "ICalUL\Documents".

## Introducing the RedLab AI-EXP32

## **Overview: RedLab AI-EXP32 features**

The RedLab AI-EXP32 is an expansion module you can use to add up to 32 single-ended analog inputs or 16 differential analog/thermocouple inputs to compatible hardware, such as RedLab 2416 Series devices. Each input channel is software configurable for either voltage or thermocouple. The analog inputs are provided on four rows of removable screw terminals.

The voltage measurement speed is the same as the connected RedLab 2416 Series module. When measuring thermocouples, configure the RedLab 2416 Series module for differential inputs.

The RedLab AI-EXP32 also provides up to 16 additional digital I/O channels. You can independently configure each channel for either input or output.

You can connect the RedLab AI-EXP32 to a RedLab 2416 Series module with the 37-pin expansion connector. The RedLab AI-EXP32 supports all of the analog/thermocouple input and digital I/O features of the RedLab 2416 Series module.

The RedLab AI-EXP32 is powered by the RedLab 2416 Series module.

#### **Software features**

For information on the features of *Insta*Cal and the other software included with your *RedLab AI-EXP32*, refer to the *Quick Start Guide* that shipped with your device. The *Quick Start Guide* is also available in PDF on our RedLab CD (root directory).

## Installing the RedLab AI-EXP32

## What comes with your RedLab AI-EXP32 shipment?

The following items are shipped with the RedLab AI-EXP32.

#### Hardware

RedLab AI-EXP32



#### Additional documentation

In addition to this hardware user's guide, you should also receive the *Quick Start Guide* (available on your RedLab CD (root directory)). This booklet supplies a brief description of the software you received with your RedLab AI-EXP32 and information regarding installation of that software. Please read this booklet completely before installing any software or hardware.

## Unpacking the RedLab AI-EXP32

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the RedLab AI-EXP32 from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

If any components are missing or damaged, notify Meilhaus Electronic immediately by phone, fax, or e-mail:

- Phone: +49 (0) 8141/5271-188
- Fax: +49 (0) 8141/5271-169
- E-Mail: support@meilhaus.com

## Connecting to a RedLab 2416 Series module with the DSUB37 expansion connector

Use the 37-pin expansion connector to connect the RedLab AI-EXP32 to a RedLab 2416 Series module.

To connect the two modules directly to each other, follow these steps.

- 1. Disconnect the USB cable from the RedLab 2416 Series module.
- 2. Remove the external power cable from the RedLab 2416 Series module.
- **3.** Connect the two devices together by inserting the RedLab AI-EXP32's DSUB37 connector into the DSUB37 connector on the RedLab 2416 Series module.



Figure 1. RedLab AI-EXP32 directly connected to an RedLab 2416-4AO

4. Turn the connected modules over and secure the connection by screwing the connection plate to both modules, as shown below.



Figure 2. RedLab AI-EXP32 secured to an RedLab 2416-4AO

5. Connect the external power supply to the power input port of the RedLab 2416- Series module, and then plug it into an AC outlet.

By connecting external power to the device before connecting the USB cable to the computer, the RedLab 2416- Series module informs the host computer upon connection of the USB cable that the device requires minimum power from the computer's USB port.

6. Connect the USB cable from the RedLab 2416- Series module to the host computer's USB port.

Connect to a USB 2.0 high speed hub to achieve the highest transfer rate (480 Mbps).

When connected to a USB 1.1 full-speed port, the transfer rate is limited to 12 Mbps.

## Connecting the device for I/O operations

#### **User connectors**

The following table lists the device connectors and compatible hardware for the RedLab AI-EXP32.

| User connec | ctors and hardware                                              |
|-------------|-----------------------------------------------------------------|
| e           | <ul> <li>Six banks of removable screw-terminal block</li> </ul> |

| Connector type                     | <ul> <li>Six banks of removable screw-terminal blocks</li> <li>37-pin male DSUB connector (for connection to parent device)</li> </ul> |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Wire gauge range (screw terminals) | 16 AWG to 30 AWG                                                                                                                       |

#### Screw terminal pin outs

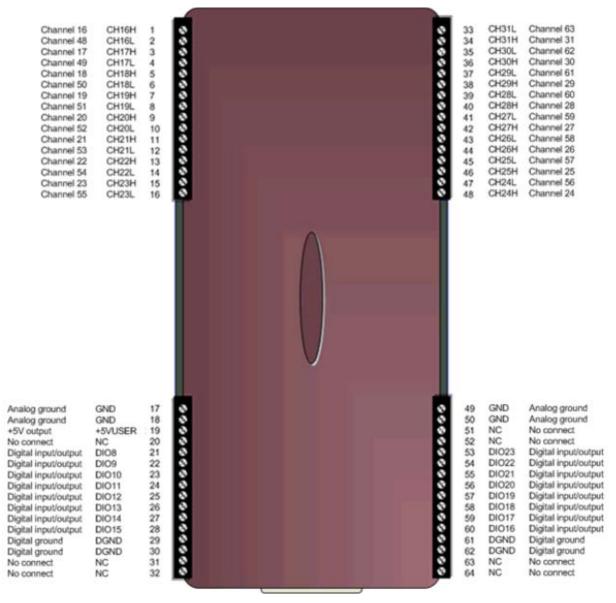



Figure 3. Single-ended mode pin out

| Channel 16 HI<br>Channel 16 LO<br>Channel 17 HI<br>Channel 17 LO<br>Channel 18 HI<br>Channel 18 LO<br>Channel 19 LO<br>Channel 20 HI<br>Channel 20 LO<br>Channel 21 HI<br>Channel 21 HI<br>Channel 22 HI<br>Channel 22 LO<br>Channel 23 HI<br>Channel 23 LO                 | CH16H<br>CH17L<br>CH17H<br>CH17L<br>CH18L<br>CH19H<br>CH19L<br>CH20H<br>CH20H<br>CH20L<br>CH22H<br>CH22L<br>CH22H<br>CH22L<br>CH23H | 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16                          | **********   |  | ************* | 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>647<br>48            | CH31L<br>CH31H<br>CH30L<br>CH30H<br>CH29L<br>CH29H<br>CH29H<br>CH22H<br>CH27L<br>CH27H<br>CH26L<br>CH27H<br>CH26L<br>CH24L<br>CH24L<br>CH24H | Channel 31 LO<br>Channel 31 HI<br>Channel 30 LO<br>Channel 30 HI<br>Channel 29 LO<br>Channel 29 LO<br>Channel 28 HI<br>Channel 28 HI<br>Channel 28 HI<br>Channel 27 LO<br>Channel 27 HI<br>Channel 26 LO<br>Channel 26 HI<br>Channel 25 LO<br>Channel 25 HI<br>Channel 24 LO<br>Channel 24 HI                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--|---------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog ground<br>Analog ground<br>+5 V output<br>No connect<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital Ground<br>Digital Ground<br>No connect<br>No connect | GND<br>GND<br>+5VUSER<br>NC<br>DI08<br>DI010<br>DI011<br>DI012<br>DI013<br>DI014<br>DI015<br>DGND<br>DGND<br>NC<br>NC               | 17<br>18<br>19<br>20<br>22<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32 | ************ |  | ************* | 49<br>50<br>51<br>52<br>53<br>55<br>55<br>55<br>56<br>57<br>58<br>59<br>00<br>61<br>62<br>63<br>64 | GND<br>GND<br>NC<br>DI023<br>DI021<br>DI020<br>DI019<br>DI019<br>DI016<br>DI016<br>DI016<br>DGND<br>DGND<br>NC<br>NC                         | Analog ground<br>Analog ground<br>No connect<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital input/output<br>Digital ground<br>Digital ground<br>No connect<br>No connect |

Figure 4. Differential mode pin out

#### Expansion connector

The RedLab AI-EXP32 has a 37-pin male DSUB connector that connects directly to the 37-pin female DSUB connector on a RedLab 2416 Series module.

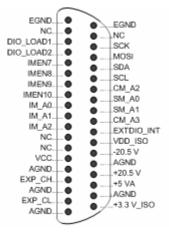



Figure 5. DSUB37 expansion connector pin out

#### Information on signal connections

For general information regarding signal connection and configuration refer to the *Guide to Signal Connections* (this document is available on your RedLab CD under "ICalUL\Documents".

## Associating CJC channels with thermocouple channels

TC channels must immediately follow their associated CJC channels in the channel array. For accurate thermocouple measurements, associate CJC channels with the TC channels as listed below.

| CJC channels | TC channels       |
|--------------|-------------------|
| CJC6         | TC8 through TC11  |
| CJC7         | TC12 through TC15 |
| CJC8         | TC16 through TC19 |
| CJC9         | TC20 through TC23 |
| CJC10        | TC24 through TC27 |
| CJC11        | TC28 through TC31 |

When measuring thermocouples, configure the RedLab 2416 Series module for differential inputs.

## **Specifications**

All specifications are subject to change without notice.

Typical for 25 °C unless otherwise specified.

All specifications apply to all temperature and voltage input channels unless otherwise specified. Specifications in *italic* text are guaranteed by design.

## Compatibility

Table 1. Host product compatibility

| Product name | Product description                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| RedLab 2416- | <ul> <li>Full-speed, multiplexed 24-bit measurement system that provides up to 16 differential and up to 32</li> </ul> |
| 4AO          | single-ended (SE) analog inputs.                                                                                       |
|              | • Eight high-speed lines of digital I/O and two 32-bit counters.                                                       |
|              | • Four 16-bit analog output channels with an update rate of 1000 S/s and an output range of ±10 V.                     |

## **Analog input**

| Parameter                                         | Conditions                                   | Specification                                                                                                |  |
|---------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Number of channels                                |                                              | Up to 32 channels individually software-configurable as single-ended or differential.                        |  |
|                                                   |                                              | Thermocouples require differential mode.                                                                     |  |
|                                                   |                                              | For each channel configured as differential, you essentially lose a single-ended channel.                    |  |
| Channel configurations                            |                                              | Temperature sensor input, software programmable to match sensor type                                         |  |
|                                                   |                                              | Voltage input                                                                                                |  |
| Input voltage range                               | Thermocouple mode                            | ±0.078125 V                                                                                                  |  |
|                                                   | Voltage mode                                 | ±20 V, ±10 V, ±5 V, ±2.5 V, ±1.25 V, ±0.625 V, ±0.3125 V,<br>±0.15625 V, ±0.078125 V, software- configurable |  |
| Absolute maximum input<br>voltage                 | <i>CxH-CxL relative to GND</i>               | $\pm 30 V$ maximum (power on)<br>$\pm 10 V$ maximum (power off)                                              |  |
| Input impedance                                   |                                              | $2 G\Omega$ (power on)<br>390 $\Omega$ (power off)                                                           |  |
| Input leakage current                             |                                              | ±20 nA                                                                                                       |  |
|                                                   | <i>Input voltage</i> >±30V<br>(power on/off) | ±1 uA maximum                                                                                                |  |
| Input capacitance                                 |                                              | 590 pf                                                                                                       |  |
| Maximum working voltage<br>(signal + common mode) | Voltage mode: ±20V<br>range                  | ±20.01 V maximum                                                                                             |  |
|                                                   | Voltage mode: all other voltage input ranges | ±10.25 V maximum                                                                                             |  |
| Crosstalk                                         | Adjacent channels                            | 100 dB                                                                                                       |  |
| Input coupling                                    |                                              | DC                                                                                                           |  |
| Warm-up time                                      |                                              | 15 minutes minimum                                                                                           |  |
| Open thermocouple detect                          |                                              | Automatically enabled when the channel is configured for a thermocouple sensor.                              |  |
| CJC sensor accuracy                               | 15 °C to 35 °C                               | $\pm 0.15$ °C typical                                                                                        |  |
|                                                   | 0 °C to 55 °C                                | ±0.5 °C maximum                                                                                              |  |

Table 2. General analog input specifications

## **Channel configurations**

| Channel | Category                                                                                                                                                                                                                                                                                                                                        | Conditions | Specification               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|
| CxH/CxL | Thermocouple<br>The AI-EXP32 GND and DGND pins are isolated from earth ground.<br>You can connect thermocouple sensors to voltages referenced to earth<br>ground as long as isolation between the GND/DGND pins and earth<br>ground is maintained.<br>Unused input channels can be left floating or tied to GND (pins 17, 18,<br>49, 50).       |            | 16 differential<br>channels |
| CxH/CxL | <u>Voltage</u><br>When connecting differential voltage inputs to a floating voltage source,<br>the user must provide a DC return path from each voltage input to<br>ground. To do this, connect a resistor from each input to a GND pin (pins<br>17, 18, 49, 50). A value of approximately 100 k $\Omega$ can be used for most<br>applications. |            | 16 differential<br>channels |
| CxH/CxL | Voltage                                                                                                                                                                                                                                                                                                                                         |            | 32 single-ended channels    |

Table 3. Channel configurations

#### **Compatible sensors**

Table 4. Compatible sensor type specifications

| Parameter    | Conditions            |
|--------------|-----------------------|
| Thermocouple | J: -210 °C to 1200 °C |
|              | K: -270 °C to 1372 °C |
|              | R: -50 °C to 1768 °C  |
|              | S: -50 °C to 1768 °C  |
|              | T: -270 °C to 400 °C  |
|              | N: -270 °C to 1300 °C |
|              | E: -270 °C to 1000 °C |
|              | B: 0 °C to 1820 °C    |

## Accuracy

#### Thermocouple measurement accuracy

The AI-EXP32 is a multiplexer-based channel expansion module that increases the number of thermocouple input channels of a RedLab 2416 series host module. For thermocouple accuracy information, refer to the electrical specification of the particular RedLab 2416 host module that is interfacing with the AI-EXP32.

There is a CJC sensor for each terminal block of the module. The thermocouple measurement accuracy assumes that the screw terminals are at the same temperature as the CJC sensor.

Connect thermocouples to the AI-EXP32 such that they are floating with respect to GND (pins 17, 18, 49, 50).

When configuring thermocouple sensors, keep any stray capacitance relative to GND (pins 17, 18, 49, 50) as small as possible to avoid settling time and accuracy errors.

#### Analog input DC voltage measurement accuracy:

The AI-EXP32 is a multiplexer-based channel expansion module that increases the number of voltage input channels of a RedLab 2416 series host module. For voltage accuracy information, refer to the electrical specification of the RedLab 2416 host device that is the interface to the AI-EXP32 interface.

## **Digital input/output**

| Number of I/O                   | 16 channels                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration                   | Each DIO bit can be independently read from (DIN) or written to (DOUT).<br>The DIN bits can be read at any time whether the DOUT is active or tri-<br>stated.                                                                                                                                                                                                           |
| Input voltage range             | 0 to +15 V                                                                                                                                                                                                                                                                                                                                                              |
| Input type                      | CMOS (Schmitt trigger)                                                                                                                                                                                                                                                                                                                                                  |
| Input characteristics           | 47 kΩ pull-up/pull-down resistor, 28 kΩ series resistor                                                                                                                                                                                                                                                                                                                 |
| Maximum input voltage range     | 0 to +20 V maximum (power on/off, relative to DGND pins 29,30,61,62)                                                                                                                                                                                                                                                                                                    |
| Pull-up/pull-down configuration | <ul> <li>All pins pulled up to +5 V via individual 47 kΩ resistors.</li> <li>The JP1 (DIO 8- 15) shorting block default position is pull-up or "HI."</li> <li>The JP2 (DIO 16- 23) shorting block default position is pull-up or "HI."</li> <li>Pull down capability is available by placing either of the JP1 and JP2 shorting blocks in the "LO" position.</li> </ul> |
| Transfer rate (software paced)  | 500 port reads or single-bit reads per second, typical.                                                                                                                                                                                                                                                                                                                 |
| Input high voltage              | 1.3 V minimum, 2.2 V maximum                                                                                                                                                                                                                                                                                                                                            |
| Input low voltage               | 1.5 V maximum, 0.6 V minimum                                                                                                                                                                                                                                                                                                                                            |
| Schmitt trigger hysteresis      | 0.4 V minimum, 1.2 V maximum                                                                                                                                                                                                                                                                                                                                            |

Table 5. Digital input specifications

**Note 1:** DGND pins (pins 29, 30, 61, 62) are recommended for use with digital input and digital output pins. The DGND and GND pins are common and are isolated from earth ground.

#### Table 6. Digital output specifications

| Number of I/O                                   | 16 channels                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Configuration                                   | Each DIO bit can be independently read from (DIN) or written to (DOUT).<br>The DIN bits may be read at any time whether the DOUT is active or tri-stated                                                                                          |  |  |
| Output characteristics                          | 47 kΩ pull-up, open drain (DMOS transistor)                                                                                                                                                                                                       |  |  |
| Pull-up configuration                           | <ul> <li>All pins pulled up to +5 V via individual 47 kΩ resistors.</li> <li>The JP1 (DIO 8- 15) shorting block default position is pull-up or "HI."</li> <li>The JP2 (DIO 16- 23) shorting block default position is pull-up or "HI."</li> </ul> |  |  |
| Transfer rate (software paced)                  | Digital output – 500 port writes or single-bit writes per second typical.                                                                                                                                                                         |  |  |
| Output voltage range                            | <ul> <li>0 to +5 V (no external pull up resistor, internal 47 kΩ pull-up resistors connected to +5 V by default)</li> <li>0 to +15 V maximum (Note 4)</li> </ul>                                                                                  |  |  |
| Drain to source breakdown voltage               | +50 V minimum                                                                                                                                                                                                                                     |  |  |
| Off state leakage current (Note 5)              | 0.1 μΑ                                                                                                                                                                                                                                            |  |  |
| Sink current capability                         | <ul> <li>150 mA maximum (continuous) per output pin</li> <li>150 mA maximum (continuous) for all eight channels</li> </ul>                                                                                                                        |  |  |
| DMOS transistor on-resistance (drain to source) | 4 Ω                                                                                                                                                                                                                                               |  |  |

**Note 2:** Each DMOS transistor's source pin is internally connected to GND.

- **Note 3:** DGND pins (pins 29, 30, 61, 62) are recommended for use with digital input and digital output pins. The DGND and GND pins are common and are isolated from earth ground.
- **Note 4:** The external pull-up is connected to the digital output bit through an external pull-up resistor. Adding an external pull-up resistor connects it in parallel with the internal  $47k \Omega$  pull-up resistor of that particular digital input/output bit. Careful consideration should be made when considering the external pull-up resistor value and the resultant pull-up voltage produced at the load.

**Note 5:** Does not include the additional leakage current contribution that may occur when using an external pull-up resistor.

#### Power

Table 7. Power specifications

| Parameter                    | Conditions                         | Specification                  |
|------------------------------|------------------------------------|--------------------------------|
| +5VUSER output voltage range | Available at terminal block pin 19 | 4.9 V minimum to 5.1 V maximum |
| User +5VUSER output current  | Available at terminal block pin 19 | 10 mA maximum                  |

## Environmental

Table 8. Environmental specifications

| Operating temperature range | 0 to 50° C maximum              |
|-----------------------------|---------------------------------|
| Storage temperature range   | -40 to 85 ° C maximum           |
| Humidity                    | 0 to 90% non-condensing maximum |

## **Mechanical**

| Table 9. | Mechanical | specifications |  |
|----------|------------|----------------|--|
|          |            |                |  |

| Dimensiona $245 \text{ mm}(I) = 146 \text{ mm}(IV) = 50 \text{ mm}(II)$ |            |
|-------------------------------------------------------------------------|------------|
| Dimensions 245 mm (L) x 146 mm (W) x 50 mm (H)                          | Dimensions |

## Screw terminal connector type and pin-out

Table 10. Screw terminal connector specifications

| Connector type   | Detachable screw terminal |
|------------------|---------------------------|
| Wire gauge range | 16 AWG to 30 AWG          |

## **Expansion port**

The AI-EXP32 expansion port is intended to interface the AI-EXP32 to a RedLab 2416 series product. Do not use any of the expansion port pins for any other purpose.

| Pin | Signal name | Pin description           |
|-----|-------------|---------------------------|
| 1   | GND         | Analog ground             |
| 2   | NC          | No connect                |
| 3   | GND         | Analog ground             |
| 4   | NC          | No connect                |
| 5   | GND         | Analog ground             |
| 6   | VCC         | +12 V power               |
| 7   | NC          | No connect                |
| 8   | NC          | No connect                |
| 9   | IM_A2       | I/O control signal        |
| 10  | IM_A1       | I/O control signal        |
| 11  | IM_A0       | I/O control signal        |
| 12  | IMEN10      | I/O control signal        |
| 13  | IMEN9       | I/O control signal        |
| 14  | IMEN8       | I/O control signal        |
| 15  | IMEN7       | I/O control signal        |
| 16  | DIO_LOAD2   | I/O control signal        |
| 17  | DIO_LOAD1   | I/O control signal        |
| 18  | NC          | No connect                |
| 19  | NC          | No connect                |
| 20  | +3.3V_ISO   | +3.3 V power              |
| 21  | GND         | Analog ground             |
| 22  | +5 VA       | +5 V analog power         |
| 23  | +20.5V      | +20.5 V power             |
| 24  | GND         | Analog ground             |
| 25  | -20.5V      | -20.5 V power             |
| 26  | VDD_ISO     | +5 V digital power        |
| 27  | EXTDIO_INT  | I/O control signal        |
| 28  | CM_A3       | I/O control signal        |
| 29  | SM_A1       | I/O control signal        |
| 30  | SM_AO       | I/O control signal        |
| 31  | CM_A2       | I/O control signal        |
| 32  | SCL         | Serial I/O control signal |
| 33  | SDA         | Serial I/O control signal |
| 34  | MOSI        | Serial I/O control signal |
| 35  | SCK         | Serial I/O control signal |
| 36  | NC          | No connect                |
| 37  | NC          | No connect                |

#### Table 11. AI-EXP32 37-pin connector pin out

| Pin | Signal name | Pin description      | Pin | Signal name | Pin description      |
|-----|-------------|----------------------|-----|-------------|----------------------|
| 1   | CH16H       | Channel 16 HI        | 33  | CH31L       | Channel 31 LO        |
| 2   | CH16L       | Channel 16 LO        | 34  | CH31H       | Channel 31 HI        |
| 3   | CH17H       | Channel 17 HI        | 35  | CH30L       | Channel 30 LO        |
| 4   | CH17L       | Channel 17 LO        | 36  | CH30H       | Channel 30 HI        |
| 5   | CH18H       | Channel 18 HI        | 37  | CH29L       | Channel 29 LO        |
| 6   | CH18L       | Channel 18 LO        | 38  | CH29H       | Channel 29 HI        |
| 7   | CH19H       | Channel 19 HI        | 39  | CH28L       | Channel 28 LO        |
| 8   | CH19L       | Channel 19 LO        | 40  | CH28H       | Channel 28 HI        |
| 9   | CH20H       | Channel 20 HI        | 41  | CH27L       | Channel 27 LO        |
| 10  | CH20L       | Channel 20 LO        | 42  | CH27H       | Channel 27 HI        |
| 11  | CH21H       | Channel 21 HI        | 43  | CH26L       | Channel 26 LO        |
| 12  | CH21L       | Channel 21 LO        | 44  | CH26H       | Channel 26 HI        |
| 13  | CH22H       | Channel 22 HI        | 45  | CH25L       | Channel 25 LO        |
| 14  | CH22L       | Channel 22 LO        | 46  | CH25H       | Channel 25 HI        |
| 15  | CH23H       | Channel 23 HI        | 47  | CH24L       | Channel 24 LO        |
| 16  | CH23L       | Channel 23 LO        | 48  | CH24H       | Channel 24 HI        |
| 17  | GND         | Analog ground        | 49  | GND         | Analog ground        |
| 18  | GND         | Analog ground        | 50  | GND         | Analog ground        |
| 19  | +5VUSER     | +5 V output          | 51  | NC          | No connect           |
| 20  | NC          | No connect           | 52  | NC          | No connect           |
| 21  | DIO8        | Digital input/output | 53  | DIO23       | Digital input/output |
| 22  | DIO9        | Digital input/output | 54  | DIO22       | Digital input/output |
| 23  | DIO10       | Digital input/output | 55  | DIO21       | Digital input/output |
| 24  | DIO11       | Digital input/output | 56  | DIO20       | Digital input/output |
| 25  | DIO12       | Digital input/output | 57  | DIO19       | Digital input/output |
| 26  | DIO13       | Digital input/output | 58  | DIO18       | Digital input/output |
| 27  | DIO14       | Digital input/output | 59  | DIO17       | Digital input/output |
| 28  | DIO15       | Digital input/output | 60  | DIO16       | Digital input/output |
| 29  | DGND        | Digital ground       | 61  | DGND        | Digital ground       |
| 30  | DGND        | Digital ground       | 62  | DGND        | Digital ground       |
| 31  | NC          | No connect           | 63  | NC          | No connect           |
| 32  | NC          | No connect           | 64  | NC          | No connect           |

| Table 12. | 16-channel | differential | mode | pin out |
|-----------|------------|--------------|------|---------|

Do not connect to terminal block pins labeled "NC."

| Pin | Signal name | Pin description      | Pin | Signal name | Pin description      |
|-----|-------------|----------------------|-----|-------------|----------------------|
| 1   | CH16H       | Channel 16           | 33  | CH31L       | Channel 63           |
| 2   | CH16L       | Channel 48           | 34  | CH31H       | Channel 31           |
| 3   | CH17H       | Channel 17           | 35  | CH30L       | Channel 62           |
| 4   | CH17L       | Channel 49           | 36  | CH30H       | Channel 30           |
| 5   | CH18H       | Channel 18           | 37  | CH29L       | Channel 61           |
| 6   | CH18L       | Channel 50           | 38  | CH29H       | Channel 29           |
| 7   | CH19H       | Channel 19           | 39  | CH28L       | Channel 60           |
| 8   | CH19L       | Channel 51           | 40  | CH28H       | Channel 28           |
| 9   | CH20H       | Channel 20           | 41  | CH27L       | Channel 59           |
| 10  | CH20L       | Channel 52           | 42  | CH27H       | Channel 27           |
| 11  | CH21H       | Channel 21           | 43  | CH26L       | Channel 58           |
| 12  | CH21L       | Channel 53           | 44  | CH26H       | Channel 26           |
| 13  | CH22H       | Channel 22           | 45  | CH25L       | Channel 57           |
| 14  | CH22L       | Channel 54           | 46  | CH25H       | Channel 25           |
| 15  | CH23H       | Channel 23           | 47  | CH24L       | Channel 56           |
| 16  | CH23L       | Channel 55           | 48  | CH24H       | Channel 24           |
| 17  | GND         | Analog ground        | 49  | GND         | Analog ground        |
| 18  | GND         | Analog ground        | 50  | GND         | Analog ground        |
| 19  | +5VUSER     | +5V output           | 51  | NC          | No connect           |
| 20  | NC          | No connect           | 52  | NC          | No connect           |
| 21  | DIO8        | Digital input/output | 53  | DIO23       | Digital input/output |
| 22  | DIO9        | Digital input/output | 54  | DIO22       | Digital input/output |
| 23  | DIO10       | Digital input/output | 55  | DIO21       | Digital input/output |
| 24  | DIO11       | Digital input/output | 56  | DIO20       | Digital input/output |
| 25  | DIO12       | Digital input/output | 57  | DIO19       | Digital input/output |
| 26  | DIO13       | Digital input/output | 58  | DIO18       | Digital input/output |
| 27  | DIO14       | Digital input/output | 59  | DIO17       | Digital input/output |
| 28  | DIO15       | Digital input/output | 60  | DIO16       | Digital input/output |
| 29  | DGND        | Digital ground       | 61  | DGND        | Digital ground       |
| 30  | DGND        | Digital ground       | 62  | DGND        | Digital ground       |
| 31  | NC          | No connect           | 63  | NC          | No connect           |
| 32  | NC          | No connect           | 64  | NC          | No connect           |

| Table 13. | 32-channel single-ended mode pin out |
|-----------|--------------------------------------|

Do not connect to terminal block pins labeled "NC."

Meilhaus Electronic GmbH Am Sonnenlicht 2 D-82239 Alling, Germany Tel.: +49 (0)8141 - 5271-0 Fax: +49 (0)8141 - 5271-129 E-Mail: sales@meilhaus.com http://www.meilhaus.com