

Product Datasheet - Technical Specifications

More information in our Web-Shop at > www.meilhaus.com

Your contact

Technical and commercial sales, price information, quotations, demo/test equipment, consulting:

Tel.:	+49 - (0)81 41 - 52 71-0
FAX:	+49 - (0)81 41 - 52 71-129
E-Mail:	sales@meilhaus.com

Meilhaus Electronic GmbH Tel. Am Sonnenlicht 2 82239 Alling/Germany Mentioned company and product names may be registered trademarks of the respective companies. Errors and omissions excepted. © Meilhaus Electronic.

+49 - (0)81 41 - 52 71-0 Fax +49 - (0)81 41 - 52 71-129 E-Mail sales@meilhaus.com

www.meilhaus.com

1 Introduction

Tekbox provides a complete solution for affordable pre-compliance conducted immunity testing: Coupling Decoupling Networks along with suitable calibration adapters and 150 Ohm transitions; BCI probes, suitable modulated wideband power amplifiers and EMCview PRO software. A third-party spectrum analyzer with tracking generator serves as signal source.

The TBMDA-CDN25 modulated amplifier provides the necessary power, bandwidth and modulation for conducted immunity testing using CDNs and BCI probes in the frequency range from 100 kHz to 250 MHz. It is designed to be driven by signal generators or by tracking generators of spectrum analyzers. With a 1 dB compression point of up to 25 W in the frequency range 100 kHz to 250 MHz it can generate test levels class 1, class 2, class 3 and class X according to ISO / EN 61000-4-6. A built in AM / PM - modulator enables use of tracking generators as signal source. The TBMDA-CDN25 has sufficient gain to achieve maximum output power with 0 dBm provided by a spectrum analyzer tracking generator.

Besides 1 kHz, 80% AM, the TBMDA-CDN25 provides built in modulation capability to generate 1 kHz, 50% duty cycle PM signals. In PM mode, the TBMDA-CDN25 can also generate a 217 Hz Signal with 12.5% duty cycle in order to simulate mobile phone TDMA noise.

Picture 1 – TBMDA-CDN25 modulated wideband driver amplifier, front view

Picture 2 - TBMDA-CDN25 modulated wideband driver amplifier, rear view

V1.0 TBMDA-CDN25

Modulated Wideband Power Amplifier

Application:

General-purpose wideband RF power amplifier Wideband RF power amplifier for conducted immunity testing driving CDNs or BCI-probes Wideband RF power amplifier for radiated immunity testing, driving near field probes Wideband RF power amplifier for radiated immunity testing, driving TEM Cells <u>Features:</u> CW amplifier (modulation off) 1 kHz, 80% AM modulation 1 kHz, 50% duty cycle pulse modulation 217 Hz, 12.5% duty cycle pulse modulation <u>Dimensions:</u> 32 cm x 28 cm x 13 cm, 5.7 kg

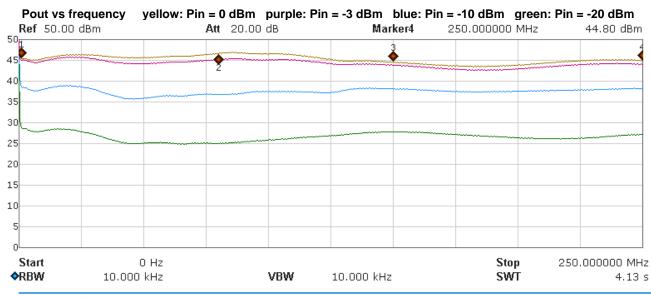
2 Electrical Specifications

Technical Data:

Input / Output: 50 Ohm, N female Supply Voltage range: 110 V...240 V Supply power consumption: 108 W @ 220V Operating temperature range: -20°C to 50°C Frequency range: 100 kHz - 250 MHz Small signal gain: 47 dB typ. Gain flatness 100 kHz – 250 MHz / Pin = -3 dBm: 3.5 dB typ. Saturated output power @ 100 kHz / Pin = 0 dBm: 44.1 dBm (25.7 W) typ. Saturated output power @ 150 kHz / Pin = 0 dBm: 44.6 dBm (28.8 W) typ. Saturated output power @ 500 kHz / Pin = 0 dBm: 45.1 dBm (32.4 W) typ. Saturated output power @ 1 MHz / Pin = 0 dBm: 45.3 dBm (33.9 W) typ. Saturated output power @ 10 MHz / Pin = 0 dBm: 45.3 dBm (33.9 W) typ. Saturated output power @ 50 MHz / Pin = 0 dBm: 45.6 dBm (36.3 W) typ. Saturated output power @ 80 MHz / Pin = 0 dBm: 46.6 dBm (45.7 W) typ. Saturated output power @ 100 MHz / Pin = 0 dBm: 46.5 dBm (44.7 W) typ. Saturated output power @ 150 MHz / Pin = 0 dBm: 44.5 dBm (28.2 W) typ. Saturated output power @ 200 MHz / Pin = 0 dBm: 43.8 dBm (24 W) typ. Saturated output power @ 230 MHz / Pin = 0 dBm: 44.9 dBm (30.9 W) typ. Saturated output power @ 250 MHz / Pin = 0 dBm: 44.8 dBm (30.2 W) typ.

1dB output compression point @ 100 kHz: +43.7 dBm typ. (Pin: -5 dBm)
1dB output compression point @ 150 kHz: +44.1 dBm typ. (Pin: -4 dBm)
1dB output compression point @ 500 kHz: +44.6 dBm typ. (Pin: -3 dBm)
1dB output compression point @ 1 MHz: +45 dBm typ. (Pin: -3 dBm)
1dB output compression point @ 10 MHz: +45 dBm typ. (Pin: -2 dBm)
1dB output compression point @ 50 MHz: +45.6 dBm typ. (Pin: 1 dBm)
1dB output compression point @ 80 MHz: +46.5 dBm typ. (Pin: 1 dBm)
1dB output compression point @ 100 MHz: +46.5 dBm typ. (Pin: 0 dBm)
1dB output compression point @ 150 MHz: +42.9 dBm typ. (Pin: -4 dBm)
1dB output compression point @ 200 MHz: +42.2 dBm typ. (Pin: -4 dBm)
1dB output compression point @ 230 MHz: +44.1 dBm typ. (Pin: -3 dBm)
1dB output compression point @ 250 MHz: +43 dBm typ. (Pin: -4 dBm)
2 nd harmonic, 100 MHz, Pout=46dBm: < - 12 dBc typ.
2 nd harmonic, 100 MHz, Pout=40dBm: < - 15 dBc typ.
3 rd harmonic, 100 MHz, Pout=46dBm: < - 22 dBc typ.
3 rd harmonic, 100 MHz, Pout=40dBm: < - 22 dBc typ.
Total harmonic distortion:
17.7% @100MHz, Pout=37dBm typ.
19.6% @100 MHz, Pout=40 dBm typ.
22.1% @100 MHz, Pout=43 dBm typ.
26.9% @100 MHz, Pout=46 dBm typ.
Third order output intercept point: +51 dBm, @100 MHz, Δ f = 2MHz, typ.
Internal modulation frequency AM: 1 kHz ±20%
Internal modulation frequencies PM: 1 kHz \pm 20%, 217 Hz \pm 20%
Duty cycle, PM: 50% ±10% @ 1 kHz; 12.5% ±20% @ 217 Hz

Maximum ratings:


Maximum input power: +3 dBm

The output of the TBMDA-CDN25 is quite tolerant to output mismatch, however open or shorted load is not recommended, as it potentially can cause damage to the output transistor. When driving near field probes, current probes or any load of unknown impedance, it is highly recommended to insert $a \ge 3dB$ attenuator at the output of the amplifier in order to protect the output stage.

Gain flatness:

Marker Table

Marker	Trace	Readout	X Axis	Ampt
Marker1	А	Frequency	1.000000 MHz	45.29 dBm
Marker2	А	Frequency	80.000000 MHz	46.56 dBm
Marker3	A	Frequency	150.000000 MHz	44.45 dBm
Marker4	А	Frequency	250.000000 MHz	44.80 dBm

Small Signal Performance (@ Pin = - 10 dBm):

Frequency [MHz]	0.1	0.15	0.5	1	10	50	80	100	150	200	230	250
Output power [dBm]	39.44	39.19	38.66	38.46	38.00	35.79	36.75	37.44	38.05	37.49	37.84	38.07
Gain [dB]	49.44	49.19	48.66	48.46	48.00	45.79	46.75	47.44	48.05	47.49	47.84	48.07

Table 1 – TBMDA-CDN25 small signal gain, typ.

1 dB compression point:

Frequency [MHz]	0.1	0.15	0.5	1	10	50	80	100	150	200	230	250
Output power [dBm]	43.36	44.06	44.57	44.98	45.04	45.62	46.54	46.46	42.86	42.23	44.01	43.02
Pin [dBm]	-5	-4	-3	-3	-2	1	1	0	-4	-4	-3	-4

Table 2 – TBMDA-CDN25, 1 dB compression point versus frequency, typ.

Saturation (@ Pin = 0 dBm):

Frequency [MHz]	0.1	0.15	0.5	1	10	50	80	100	150	200	230	250
Output power [dBm]	44.12	44.62	45.07	45.29	45.34	45.56	46.56	46.46	44.45	43.76	44.93	44.80
Gain [dB] 44.12 44.62 45.07 45.29 45.34 45.56 46.56 46.46 44.45 43.76 44.93 44.80												
	Table 2 TRADA CDN95 Caturation years of framewards the											

Table 3 – TBMDA-CDN25, Saturation versus frequency, typ.

Modulation:

Zero span, 10 ms sweep time, peak detector

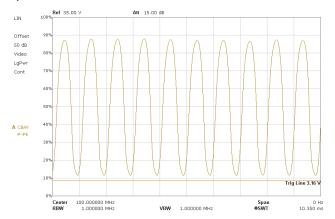


Figure 1 – 1 kHz, 80 % AM, envelope, 100 MHz, Pout = 44 dBm peak;

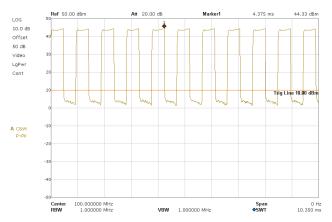


Figure 2 – 1 kHz, 50 % PM envelope, 100 MHz, Pout = 44 dBm peak

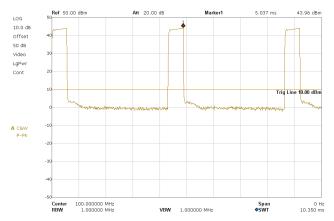


Figure 3 – 217 Hz, 12.5 % PM envelope, 100 MHz, Pout = 44 dBm peak

3 Applications - radiated immunity

Immunity testing using a TEM cell

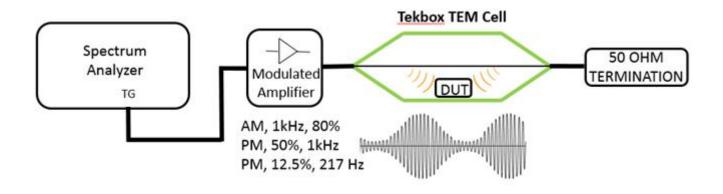


Figure 4 - immunity testing set up

Immunity testing using near field probes

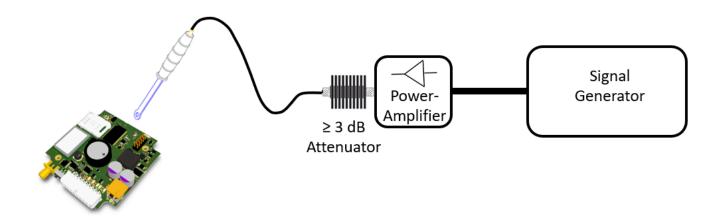


Figure 5 – immunity testing set up to locate susceptible areas on PCBAs

Radiated immunity EMC pre-compliance is typically a 2-step procedure. First, a TEM cell is used to investigate for immunity issues of the DUT. In case of any failure, near-field probes will be used to locate the sensitive circuitry on the PCBA.

TEM Cell field strength

A typical pre-compliance set up for immunity testing is typically not equipped with an E-field probe to measure the real field strength inside the TEM cell. However, the field strength can be calculated with sufficient accuracy for EMC pre-compliance set-ups.

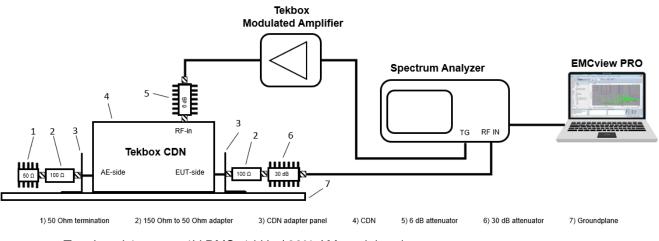
The E-field (V/m) between septum and lower (upper) wall of a TEM cell is E = V/d where V is the RMS voltage of the applied signal and d is the distance between septum and lower (upper) wall. This is based on the simplified assumption that the E field would be perfectly homogenous/evenly distributed. A more practical formula is $E = V^*$ Cor/d where Cor is a correction factor for the average field strength over the volume of the DUT derived from the analysis of the field distribution over the cross section of the cell.

Assuming the DUT is placed in the center of the cell and in the middle between bottom wall and septum, we can use the simplified formula with sufficient accuracy.

TBTC0: d = 2.8 cm -> $E_{V/m} = (\sqrt{P^*50\Omega})^*35.7$ TBTC1: d = 5 cm -> $E_{V/m} = (\sqrt{P^*50\Omega})^*20$ TBTC2: d = 10 cm -> $E_{V/m} = (\sqrt{P^*50\Omega})^*10$ TBTC3: d = 15 cm -> $E_{V/m} = (\sqrt{P^*50\Omega})^*6.66$

The power P in the formulas above hast to be entered in [Watt] P $_{\rm [W]} = 0.001^*(10^{\Lambda}~(P_{\rm [dBm]}/10))$

Frequency [MHz]	Input power [dBm]	Output power [dBm]	Field strength TBTC0 [V/m]	Field strength TBTC1 [V/m]	Field strength TBTC2 [V/m]	Field strength TBTC3 [V/m]
0.1	-3	43.86	1245	697	349	232
0.15	-3	44.32	1313	735	368	245
0.5	-3	44.57	1351	757	378	252
1	-3	44.98	1416	793	397	264
10	-3	44.76	1381	774	387	258
50	-3	44.13	1284	719	360	240
80	-3	45.07	1431	802	401	267
100	-3	45.01	1421	796	398	265
150	-3	43.77	1232	690	345	230
200	-3	42.86	1110	622	311	207
230	-3	44.01	1267	710	355	236
250	-3	43.92	1254	702	351	234


Table 4 – calculated field strength for the TBMDA-CDN25 driving Tekbox TEM cells

The above output power is the RMS output power in case of a CW signal. Note that in case of 80% AM modulation, the RMS power of the modulated signal will be 5.1 dB lower than the RMS power of the CW signal.

4 Applications - conducted immunity, using CDNs

EN 61000-4-6 calibration set up using EMCview PRO

- Test Level 1: 1V RMS, 1 kHz / 80% AM modulated
- Test Level 2: 3V RMS, 1 kHz / 80% AM modulated
- Test Level 3: 10V RMS, 1 kHz / 80% AM modulated
- Test Level X: special (unspecified)

The specified test levels are open circuit voltages at the EUT port of the CDN.

The voltages measured during calibration must be multiplied by 3 to allow for the 50 Ohm to 150 Ohm conversion and again by 2 to reach the open circuit voltage.

Hence, the measured voltage at the output of the 150 Ohm to 50 Ohm adapter is 1/6 th the voltage of the desired stress level. In logarithmic figures, the measured voltage is 15.5 dB lower than the open circuit voltage.

Example: Test level 3

 U_0 = 10V RMS open circuit voltage at the EUT port of the CDN = 10V/6 = 1.667V RMS at the output of the 100 Ohm to 50 Ohm adapter.

The required power at the output of the modulated amplifier is:

U₀/6 [dBm] + CDN insertion loss + 6 dB (Attenuator) + 5.1 dB (80% AM RMS)

Assuming 10 dB insertion loss for the CDN, the required RF power is:

17.4 dBm + 10 dB + 6 dB + 5.1 dB = 38.5 dBm = 7.08 Watt

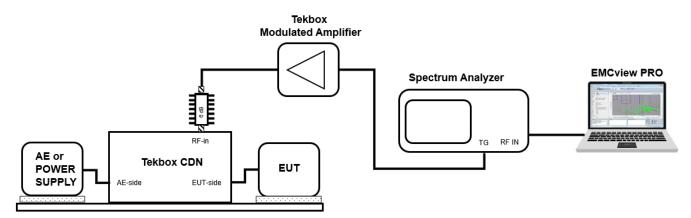
During calibration, EMCview Pro will make a stepped sweep, for each frequency adjusting the tracking generator level in order to achieve 17.4 dBm + 5.1 dB -30 dB = -7.5 dBm at the spectrum analyzer input. The tracking generator level table will then be used to set levels during the actual immunity test.

The typical insertion loss of a CDN with attached 150 Ohm to 50 Ohm adapter is 10 dB.

Adding the 6 dB attenuator and 5.1 dB for the AM RMS conversion results in a quasi-insertion loss of 10 dB + 6 dB + 5.1 dB = 21.1 dB.

For open circuit voltages of 1V, 3V and 10V, the corresponding power at the output of the 150 Ohm to 50 Ohm adapter is -2.6 dBm, 7 dBm, 17.4 dBm RMS CW. Add 5.1 dB to cover the RMS power of 80% AM modulation.

Consequently, the required power at the input of the 6 dB attenuator for class 1/2/3 is 18.5 dBm / 28.1 dBm / 38.5 dBm.

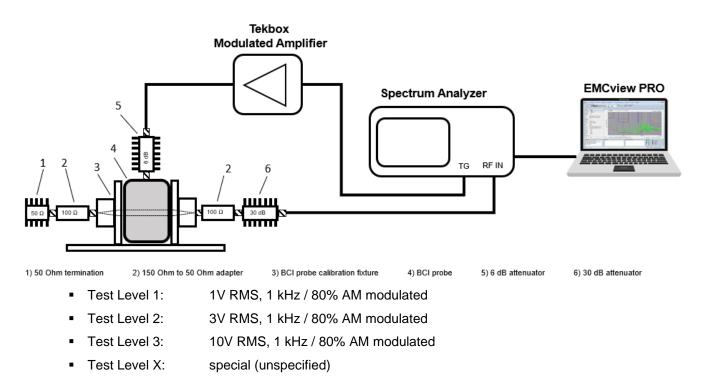

The table below reflects the insertion loss versus frequency of a real CDN in order to set the required input power for the TBMDA-CDN25.

Frequency [MHz]	TBMDA- CDN25 output power to achieve stress level 1 [dBm]	Corresponding TBMDA-CDN25 input power [dBm]	TBMDA- CDN25 output power to achieve stress level 2 [dBm]	Corresponding TBMDA-CDN25 input power [dBm]	TBMDA- CDN25 output power to achieve stress level 3 [dBm]	Corresponding TBMDA-CDN25 input power [dBm]
0.15	17.2	-32 dBm	27.2	-22 dBm	37.2	-12 dBm
0.5	16.7	-32 dBm	26.7	-22 dBm	36.7	-12 dBm
1	17.5	-31 dBm	27.5	-21 dBm	37.5	-11 dBm
10	18	-30 dBm	28	-20 dBm	38	-10 dBm
100	18.9	-27 dBm	28.9	-17 dBm	38.4	-9 dBm
230	19.8	-27 dBm	29.8	-17 dBm	39.8	-9 dBm

Table 4 - measured input power settings for the TBMDA-CDN25 in order to achieve stress level 1, 2 and 3

EMCview PRO has the capability to automatically adjust the tracking generator level in order to achieve the desired stress level voltage. The output is a calibration table, which is loaded and applied during the immunity test.

EN 61000-4-6 immunity test set up using EMCview PRO



5 Applications - conducted immunity, using BCI probes

EN 61000-4-6 specifies stress levels in terms of voltage and calibrates the immunity set up using a 300 Ohm loop. Other standards specify stress levels in terms of injected current.

EN 61000-4-6 300 Ohm loop BCI calibration set up using EMCview PRO

The specified test levels are open circuit voltages at the output of the calibration fixture.

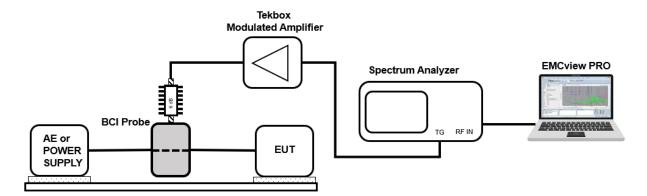
The voltages measured during calibration must be multiplied by 3 to allow for the 50 Ohm to 150 Ohm conversion and again by 2 to reach the open circuit voltage.

Hence, the measured voltage at the output of the 150 Ohm to 50 Ohm adapter is 1/6th the voltage of the desired stress level. In logarithmic figures, the measured voltage is 15.5 dB lower than the open circuit voltage.

<u>Example</u>: Test level 3 U₀= 10V RMS open circuit voltage at the output of the calibration fixture = 10V/6 = 1.667V RMS at the output of the 100 Ohm to 50 Ohm adapter.

The required power at the output of the modulated amplifier is:

U₀/6 [dBm] + BCI probe insertion loss + 6 dB (Attenuator) + 5.1 dB (80% AM RMS)


Assuming 16 dB insertion loss for the BCI probe in a 300 Ohm loop, the required RF power is:

17.4 dBm + 16 dB + 6 dB + 5.1 dB = 44.5 dBm = 28.2 Watt

During calibration, EMCview Pro will make a stepped sweep, for each frequency adjusting the tracking generator level in order to achieve 17.4 dBm -30 dB = -12.6 dBm at the spectrum analyzer input. The tracking generator level table will then be used to set levels during the actual immunity test.

EN 61000-4-6 immunity test set up using a BCI probe and EMCview PRO

6 PC Software for immunity testing

Tekbox provides two software versions for EMC pre-compliance measurements

EMCview provides a feature to control the tracking generator output frequency and level and carry out sweeps with constant tracking generator level.

EMCview PRO provides a more sophisticated feature, which is able to carry out calibration sweeps for CDN and BCI based set ups. The resulting calibration file is used to set the tracking generator level during the immunity test sweep.

Tekbox EMCview currently supports Rigol, Siglent, Owon, R&S FPC and FPH series spectrum analyzers.

EMCview	state prevent interiors and of	- • ×
Elle Revice Setup Mode About TEKBOX DIGITAL SOLUTIONS	Power Ramping Freq[Hz]	Mode Fixed Frequencies • ingle shot • periodic Fixed[H2] TG[d8m] • [10000 [3]
Settings Parameter Value Amp Car over TEM Car none SEPTUMenil 2.8 Tg eff on	PowHigh(dbm) PA(dbm) Et//mj 3 3.00-5.55 12/mic 11(mocc) 13/micc) 12/mic 3 1000 5 3 9 1000 5 9 1000 9 9 1000 100 15 12/mic 100 15 15.00-1.42	▶ 700000 -3
	Frequency Sweep Hz dBm	Maik Freq by * Maik Freq by #
Messager		Inejec] Powejdinj 3 3 3 3 3 3 3 3 3 3 3 3 3
9000		4.096MB 4.096MB 6 (V03.02v #10210 (12.16.49

Figure 11 - screenshot of the tracking generator control feature of EMCview / EMCview Pro

🚟 EMCview						
File Device Setup	Mode About					
Immunity Test Se Parameter Freq Start[Hz] Freq Stop[Hz] Freq Stop[M] Level [dBm]	Value 150000 80000000 50 -2.6	Calibrate Abort Calibration Save Calibration File		Immunity Measurement Parameter Calibration Freq Start Sweep[Hz] Freq Stop Sweep[%] Dwell Time Sweep[%] Dwell Time Sweep[%] Freq Single[Hz]	Value none 1 50000 3 80000000 1 1 1 150000	
		Save Calibration File		Mode	sweep	
Calibration Setup EN 61000-4-6 C Level[nb] Level 3 💌	DN EN 61000-4-6 BCI ISO	11452-4 Required RF power[dBm][W] 38.55 dBm = 7.16 W		Free	d:	TG ON Pause
Calc		Tekbox		Messages		
Calibration Leve -7.45 dBm	6 € RF-in Tekbox CDN 10 €	Modulated Amplifier Gain 44 dB 30 €	Spectrum Analyzer TG RF IN -2.00 dBm	TG:		clear

Figure 12 – screenshot of the immunity test feature of EMCview Pro

WARNING:

Never connect the output of the TBMDA-CDN25 directly to the input of a spectrum analyzer. Check the maximum input ratings of the spectrum analyzer and protect it with an appropriate attenuator.

Open or shorted load is not recommended, potentially can cause damage of the RF output stage. Use $a \ge 3$ dB attenuator at the amplifier output, when driving loads with poor SWR.

Example: Rigol DSA815 – maximum input power rating: +20dBm

7 Ordering Information

Part Number	Description
TBMDA-CDN25-EU	modulated power amplifier, 2 pcs 75cm N-male to N-male cables, 1 pc 6 dB attenuator, 1 pc 30dB / 50W attenuator with N-connectors, C13 Schuko power cord
TBMDA-CDN25-US	modulated power amplifier, 2 pcs 75cm N-male to N-male cables, 1 pc 6 dB attenuator, 1 pc 30dB / 50W attenuator with N-connectors, C13 US power cord
TBMDA-CDN25-UK	modulated power amplifier, 2 pcs 75cm N-male to N-male cables, 1 pc 6 dB attenuator, 1 pc 30dB / 50W attenuator with N-connectors, C13 English power cord
TBMDA-CDN25-AU	modulated power amplifier, 2 pcs 75cm N-male to N-male cables, 1 pc 6 dB attenuator, 1 pc 30dB / 50W attenuator with N-connectors, C13 Australian power cord

Table 5 – Ordering Information

8 History

Version	Date	Author	Changes
V1.0	13.12.2022	Mayerhofer	Creation of the document

Table 6 – History